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Statistical Weather Forecasting  (Wilks, Chapter 6) 
 

A. Without NWP 
 
Linear regression 
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Linear regression forecast 
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Simple linear regression: one predictor (K=1) 
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i
= y

i
" b

0
" b

1
x

i
 

 

Choose b0, b1, to minimize
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Now, replacing b0  
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So that for the second coefficient b1 
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From here  
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Exercise: From yi = b0 + b1xi + !i and the formulas for b0 , b1show that 
x '! ' = 0 , i.e., that the forecast error must be uncorrelated to the predictors. 
 
Note that b1 can be written as 
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where ! is the sample x-y correlation, and 
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of the variance. 
 
It is convenient to consider sums of squares: We can divide the “sum of 
squares” = “n*variance” of y in the following way: 
 
SST       =     SSR          +      SSE 
Total y-       Regression      Forecast error 
variance         variance             (residual) variance 
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So, since

  SST = ny '
2 is the total variance of y (with n-1 degrees of freedom) 
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1! "2( )  is the residual (error) variance of y 

 
 
Therefore , since SST=SSR+SSE 
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2!2 is the “explained variance” of the regression forecast: the square 

of the correlation gives the percentage of “explained variance” in the 
dependent sample used to derive the regression coefficients. 
 
In the case of multiple regression, this is also true, allowing the definition of 
a “coefficient of determination” R2 (a generalized squared correlation): 
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Now, after we finished the “training” of the simple linear regression (finding 
b0 , b1) for the dependent data set, we have a new independent predictor x0. 
When we apply the formula we derived for the dependent sample to this 
independent new predictor, then the forecast error variance estimate is larger 
because the training data has sampling errors: 
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If instead of simple regression we have multiple regression with K 
predictors, the error for a new independent predictor also increases 
compared to the dependent sample estimate: 
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So, if the new predictor is far from the mean, the expected error of the 
forecast is large! The prediction error with independent data is increased 
compared with the dependent (training) sample for two reasons: 1) the 
number of degrees of freedom is reduced by using K predictors, and 2) the 
dependent sampling errors are built into the prediction equation (and don’t 
apply to an independent sample).   
 


