
 24 

Summary for simple linear regression 
 
Dependent data 
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2 is the total variance of y (with n-1 d.o.f.) 
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" = SST 1# $2( ) is the residual (error) variance, with n-2 d.o.f, or in 

the case of multiple regression, with K predictors, with n-K-1 d.o.f. 
 
  
SSR = SST ! SSE = SST"2 is the “explained variance”, with 1 d.o.f. (or K d.o.f. 
in the case of multiple regression). 
  
Generalized coefficient of determination R2: 
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: “explained variance” (for the 

dependent sample) 
 
Estimation of errors in the regression coefficients: 
 
The coefficient b1, divided by the standard deviation obtained from the 
sample has a tn-2 random distribution: 
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This means that we can test whether b1 is significantly different from zero by 
using the t table 2 with n-2 d.o.f. at a level of significance of, let’s say 5%. 
The 95% confidence interval for b1 is  
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Similarly 
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and the limits of confidence for b0 are similarly 

determined. 
 
For a new predictor x0, the limits of confidence of the new prediction can be 
obtained from the fact that it has a distribution 
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We will see more about this after the multiple regression discussion. 
 
Note that a “naïve” estimation of the forecast error variance 
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Analysis of residuals: Ideally the residuals (forecast errors) should look 
random, without trends. If we find, for example 
 
 
 
 
 
 
 
 
 
If there is a trend, it is better to change variables, for the predictor, 
e.g.,
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xK . Note that this is still a linear 
regression, with multiple predictors, even if the predictors are nonlinear 
functions of x. 
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