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Multiple linear regression: (with K predictors) 
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The regression coefficients are
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, the forecast equation is  Ŷ = XB , and 

the forecast error vector 
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is given by E = Y ! XB . 

 
Least squares approach: choose B to minimize  | E |2= E

T
E = SSE . 

 

The total sum of squares (variance) of Y is
  

SST = y
i
'
2
= Y '

T
Y '

i=1

n

! . 

 
The residual (forecast errors) sum of squares is 
  SSE = E

T
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(all terms are scalars).The minimization is clearer in sum notation: 
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The minimization gives the “normal equations”: 
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So, in matrix form, the normal equations for the coefficients are 
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T
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Again, we separate the total sum of squares SST into the regression 
(explained) sum of squares (SSR) and the error sum of squares (SSE). 
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Since these are all scalars, they are the same as their transpose: 
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so that  

  SSE = Y
T
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(the scalar product of the error and the predictand).  
Note (prove) that  ET

Ŷ = 0 , the error is orthogonal to the forecast). 
 

  SSR = SST - SSE = R
2
SST  
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          is the square of the generalized correlation coefficient 

or explained variance. 
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This is an estimate for the dependent sample used for training the regression, 
so that it is overoptimistic! In an independent sample, the explained variance 
is smaller. 
 

Note that the “naïve” forecast error variance 
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biased (overoptimistic). This is for two reasons: a) we are using K 
predictors, and b) it is the estimate for the dependent (training) sample. 
 
The unbiased estimate for the forecast error variance for the dependent 
sample is 
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This is because the SSE is estimated with n-K-1 d.o.f.  
SST is estimated with n-1 d.o.f (one d.o.f. was used to compute y ). 
SSR uses K d.o.f. for the regression coefficients

 
b

k
, so that  

SSE is left with n-K-1 d.o.f. 
 
It is clear that is we use too many predictors, i.e., if   K ~ O(n)  we can have 
over fitting. If K=n-1, we can fit perfectly the dependent sample, so that the 
naïve dependent sum of errors squared is  SSE = 0 . However, the estimate of 
the dependent forecast error squared is in that case 
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So we should never over fit, and should keep a number of predictors such 
that K<<n. 
Moreover, the regression coefficients (trained on the dependent sample) also 
have sampling errors (they are only estimates of the true regression 
coefficients).  
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Therefore when we apply the regression formula to new predictors 
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independent data set), the standard deviation of the error is given by 
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   For K=1 this correction for independent data is  
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Therefore the forecast error for independent data is given by the t 
distribution 
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We can estimate a 100(1-a)% confidence interval for predicting 
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If a=5%, we look for values of
  
t
2.5%,n!K !1

. 
 

uncertainty 
increases with  
the number of 
predictors K 

uncertainty 
increases due to errors 
in the sampling of B 
when used with 
independent data 
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These prediction error estimates are only estimates. A better estimation of 
the error is to reserve part of the data for independent data testing (cross-
validation). 
For example, we use 90% of the data to obtain the regression coefficients, 
and test the forecast on the remaining 10%. In that case this can be repeated 
10 times for different 10% subsets (“jackknifing”). This will give a good 
estimate of the forecast errors to be expected with an independent data set, 
as well as the error variance of the regression coefficients. 
 
Statistical packages provide information not only about regression 
coefficients but also about their error estimates (using the formulas above) 
and about how significantly smaller is the forecast error. This is given in 
analysis of variance (ANOVA) and parameter error tables. 
 
ANOVA 
Source of 
variance 

d.o.f. Sum of 
Squares (SS) 

Mean Square 
MS=SS/dof 

Fratio test 
statistic 

Total n-1 SST SST/(n-1)  
Regression K SSR SSR/K MSR/MSE 
Error (residual) n-K-1 SSE SSE(n-K-1)  
 
Regression Summary 
Predictor Coefficient Standard error t-ratio (n-K-1) 
Constant 
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If the Fratio is large compared to 
  
F

.05,K ,n!K !1
then we reject the null hypothesis 

that the coefficients 
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k
are really zero for the population and that 
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k
! 0 due to 

sampling. 


