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Classical Statistical Forecasting 
 
Basically, statistical weather forecasting is linear regression: given a 
predictand (e.g., surface temperature in DCA), choose predictors available in 
time to perform a forecast. For example, forecast tomorrow’s Tmin given 
today’s observations. 
 

1) Stratification and compositing: 
 
In order to make the coefficients k

b more reliable, stratify the data into 
homogeneous bins, rather than mixing inhomogeneous data. Examples: 
stratify data according to season, and compute separate regression equations 
for each season separately. Stratify data for long-range forecasting into El 
Niño, La Niña, and non-ENSO years. 
 
In order to increase the size of the dependent sample, composite several 
similar dependent data. Example: divide the country into “homogeneous” 
regions and assume that the same regression equation applies to all the 
stations within a regions. Or, since La Niña response is approximately equal 
and opposite to El Niño, composite El Niño events with “minus La Niña”  
 
 
 
 
 
 
 
 
 
 
 

2) Prediction of a yes-no event. 
 

Simple approach:  
1  if yes

0   if no
y
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 and use regression. 
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Regression estimation of event probabilities (REEP) 
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REEP: Determine a least-squares fit to the observations and interpret the 
result as a forecast of probabilities!! 
 
Problems with this approach: 1) we don’t know whether these are fair 
probabilities. 2) We can get P(y)<0 or P(y)>1. 
 
If we change variables for the linear regression fit: 
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, we solve 2) but not 1). 

 
 
 
 
 
 
 
 
 
 
 
(see chapter 7 of Wilks for a discussion on verification of probabilistic 
forecasts). 
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3) How to choose predictors and when to stop 
 
Screening regression, also known as stepwise regression 
 
1. Gather a pool of M physically reasonable potential predictors and a 
dependent (developmental) set of predictors and a predictand. 
 
2. Do a 1-predictor regression with each potential predictor and choose as 
the first predictor the one with best R2 ( 2!  for a single predictor), i.e., the 
one with smallest SSE. 
 
3. Do a 2-predictor regression, with the first predictor combined, in turn, 
with each other predictor, to find the 2-predictor combination that gives the 
best R2. (i.e., screen all other predictors for the best combined R2, or largest 
F-ratio MSR/MSE). 
 
4. Repeat 3) with 3 predictors, adding to the first two predictors, in turn, all 
the others, and screening for the best R2, largest F-ratio MSR/MSE. 
… 
Alternatively, one can use backward elimination: start with all M potential 
predictors and drop the least important. A good approach is to drop the one 
with the smallest t-ratio, indicative that its regression coefficients are least 
significant. Then drop other predictors after recomputing the regression with 
M-1 predictors. 
 
Note that because predictors may be mutually correlated, both the forward 
and the backward screening require recomputation of the regression 
coefficients after adding or dropping a predictor.  
 
 
 
When to stop adding predictors? There is no certain rule! Rules of thumb: 
 
*  When R2 is increased by less than 5%, or 
 

*  When 
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does not decrease appreciably. 
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Some statistical packages (like Excel) provide an Adjusted R2: 
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This is a correction that compensates for the tendency of R2 to increase with 
the number of predictors in the dependent sample, even if there is no 
significant additional information. 
 
Best approach: test with independent data! 
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