
A simple application of Artificial Neural
Network to cloud classification

Tianle Yuan

For AOSC 630 (by Prof. Kalnay)

Introduction to Pattern Recognition
(PR)

• Example1: visual separation between the
character ‘M’ and ‘N’

• Example2: tell an elephant from a
crocodile in a picture

• Example3: identification of someone’s
voice from an piece of audio stream

…

The problem

• They all sound easy from the perspective
of a brain.

• However, if all the information is given as
a matrix, to ask a machine to finish the job
is non-trivial.

• The problem: how to numerically
categorize the information

Two steps

Step One:
Feature extraction (typically require human

intervention, creative step)
Step two:
Categorization (typically automatic and

largely numerical, technical step)

Brief Review of ANN

• ANN is basically a mapping tool for
complicated input-output relationships.

• It’s made up of layers of neurons. Each
neuron is a transformation function.

• The most important step is training which
involves minimization of a cost function.

• Once training is finished and validated, the
application is cheap and fast.

Apply ANN to Pattern Recognition

• Extract feature vectors from patterns
• Train the ANN

– Try different initial guesses
– If not successful try different feature vectors
– Error tolerance

• Validate the ANN with independent samples
– Large enough independent sample
– Success rate

• Application

Stratocumulus Clouds

Climatically Important

Statistics of a Scene
1 2

3 4

Panel 1: A 1-km solution cloud reflectance
picture with size of 256X256. Cloud
properties like cloud optical depth and cloud
liquid water path can be derived.

Panel 2: Liquid water path distribution

Panel 3&4: power spectra of liquid water
path of image 1. panel 3 has 30 bins and
panel 4 has 40 bins in the x axis (wave
number)

Cloud scenes

a
b

c d

What do we know

• Type a: open cellular
• Type b: closed cellular
• Type c: non-structural, uniform
• Type d: cellular, individually organized

What do we know

• Liquid water path distributions for types a
and d are distinct from types b and c. One
has a modal distribution and the other is
non-modal.

• Spatial organizations of these cloud types
are also distinct. Types a and b both have a
characteristic scale while c and d hardly
show any regularity.

Cloud scenes

a
b

c d

Ideas

• Liquid Water Path (LWP) probability
distribution (modal vs. non-modal)

• Use power spectrum of LWP for each cloud
scene to represent spatial structure because
power spectrum tells us which spatial
frequency is prominent in images. Non
structural images shall display a simple
power law in the power spectrum.

FV = [a1,…,a30,b1,…,b40], where a1-a30
are normalized frequencies of 30 LWP
bins for a cloud scene; b1-b40 present
normalized power spectrum of a cloud
scene using 40 bins.

So FV is a 70-element vector that
includes both LWP probability
distribution and image spatial structure
information.

One may modify the number of bins to
present both distributions to test the
sensitivity of ANN.

Feature vector (input)

Classification into a, b, c, d (output)

Structure of the ANN

Error
Tolerance?

Y

Adjust
Weights

N

Training and validation

• Humanly inspect about eight hundred
cloud scenes and categorize them.

• Randomly pick about 400 scenes with
each category having 100 samples.

• Train the ANN until it performs as desired
and apply to validation set (the rest of the
400 scenes).

Results (Accuracy)
• Training set: correctly picked 378 out of 380 scenes.
• Validation set: correctly identified 356 out of 381 scenes
• Sensitivity tests were performed with respect to the lengths

of LWP PDF and power spectrum vectors, and. Results are
similar.

• Most miss-identifications occur for cloud type d, as shown
by the following table (proportion correct=Accuracy)

Type a b c d

T.A. 1.0 0.994 1.0 0.95

V.A. 0.925 0.933 0.986 0.75

How the algorithm works

• First, do a forward calculation and get the error
• Then adjust the weights and biases of output

neurons.
• Since we know the function form of the

transformation function, back propagation of
error is then carried out and weights and biases
of hidden layer is adjusted.

• Check the accuracy and if not satisfied go to
step one again.

Codes

• They are written in IDL with comments
explaining the usage and how to read the
program with basic understanding of ANN.

• One can create one’s own normalized
spectrum data and use this ANN to train
and classify data patterns.

What’s inside the codes?

• A transformation function, in my case it’s a
sigmoid function , mapping
inputs from first layer to hidden layer
outputs and then to output layer.

• An iteration algorithm that calculates error,
back propagates and adjusts weights and
biases in order to minimize errors.

1 / (1+ exp(!x))

“Neurons”
; compute values of hidden layer
neurons (z)

z_in =
transpose(input#w_hid+bias_hid)
z = 1.0d0/(1+exp(-z_in))

; compute values of output layer
neurons (y)

y_in = transpose(z#w_out+bias_out)
output = 1.0d0/(1+exp(-y_in))
h_output = z

back

“z_in”: the input feature vector
for the hidden layer; “z” is the
out put from the layer

“y_in”: the input vector for the
output layer; “output” is the
out put from the layer

back

Essential code for the iteration

Predicted minus Observed cloud class

Adjust weights and biases of output layer

Based on the Sigmoid function analytically
 calculate differential and adjust weights
and biases

Add some momentum term to the adjusting
Process to get fast convergence

