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Appendix Texts 

Text S1: Necessity of high-resolution surface O3 data 
The lifetime of surface O3 varies considerably with location and season, ranging from a few hours 

in polluted urban regions up to a few weeks in the upper troposphere, as reported in many previous 

studies (Griffiths et al., 2021; Monks et al., 2015; Stevenson et al., 2006; Young et al., 2013). 

Additionally, O3 exhibits a distinct chemical mechanism, notably its strong nonlinearity with NOX 

(Lin et al., 2018; Wang et al., 2017). For example, O3 concentrations in a city center are typically 

lower than those in suburban areas (Xie et al., 2016), and concentrations around urban roads are 

generally lower than in other parts of the city center (Mavroidis and Ilia, 2012). Moreover, the 

substantial presence of background O3 may result in smaller actual spatial disparities (Reid et al., 

2008). 

 

In our study, we examined the scale of O3 variability and found the existence of strong O3 

heterogeneity by analyzing surface O3 differences at multiple closely located sites in typical 

regions across China. The Kruskal-Wallis H-test and Dunn's test methods were utilized to assess 

the differences among these sites. When p-values are less than 0.05, this indicates significant 

differences between data from the two sites at a 95% significance level. Here, we have identified 

six densely populated areas with multiple closely situated ground monitoring stations across China 

(Figure S8) and computed the variances in surface O3 levels observed at these locations in 

comparison to their nearby sites within the region (Figure S9). Results show that the majority of 

p-values between sites fall below 0.05, indicating pronounced spatial gradients in hourly O3 

concentrations among the closest sites within the 0.1° × 0.1° (approximately 10 km × 10 km) grid 

at the 95% confidence level. This underscores the importance of producing hourly O3 data at a 

high spatial resolution (e.g., 1 km) because it facilitates the monitoring of fine-scale spatial 

variations in surface O3 concentrations, especially in urban areas. 
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Appendix Figures 

 
Figure S1. Spatial distribution of ground-based surface O3 monitoring stations in 2019 in China. 
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Figure S2. Comparisons of model performance (a, d, g) without, (b, e, h) with conventional, and 

(c, f, i) with improved spatial and temporal information for sample-CV (top row), station-CV 
(middle row), and block-CV (bottom row) results at 17:00 (Beijing Time) across China (sample 

size = 476,039). The linear-regression relation, coefficient of determination (R2), root-mean-
square error (RMSE, μg/m3), mean absolute error (MAE, μg/m3), and mean relative error 

(MRE, %) are also given. 
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Figure S3. Out-of-station cross-validation results of hourly O3 estimates (μg/m³) from 00:00 to 
23:00 LT for 2019 in China using the 4D-STET model. Black dashed lines denote 1:1 lines, and 
red solid lines denote best-fit lines from linear regression. The sample size (N), linear-regression 

relation, coefficient of determination (R2), root-mean-square error (RMSE, μg/m3), mean 
absolute error (MAE, μg/m3), and mean relative error (MRE, %) are also given. 
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Figure S4. Out-of-block cross-validation results of hourly O3 estimates (μg/m³) from 00:00 to 

23:00 LT for 2019 in China using the 4D-STET model. Black dashed lines denote 1:1 lines, and 
red solid lines denote best-fit lines from linear regression. The sample size (N), linear-regression 

relation, coefficient of determination (R2), root-mean-square error (RMSE, μg/m3), mean 
absolute error (MAE, μg/m3), and mean relative error (MRE, %) are also given. 
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Figure S5. Surface O3 concentrations (μg/m³) monitored for each hour throughout the day 
(00:00–23:00 LT, surrounding subplots), along with average maps during the (a) daytime 

(08:00–20:00 LT) and (b) nighttime (20:00–08:00 LT) in 2019 across China. 
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Figure S6. Boxplots of diurnal surface O3 concentrations (top row; μg/m³) and the sorted SHAP 
importance of each variable during the daytime (08:00–20:00 LT) and nighttime (20:00–08:00 
LT) in 2019 for (a) the Beijing–Tianjin–Hebei region, (b) the Yangtze River Delta region, and 
(c) the Pearl River Delta region. Black dashed lines represent the diurnal variations observed 
from ground measurements. In each box, the middle, lower, and upper horizontal black lines 

represent the mean bias, 25th percentile, and 75th percentile, respectively. 
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Figure S7. Boxplots of diurnal surface O3 concentrations (μg/m³) covering the day for different 
seasons for China, the Beijing–Tianjin–Hebei (BTH) region, the Yangtze River Delta (YRD) 

region, and the Pearl River Delta (PRD) region. Black dashed lines represent the diurnal 
variations observed from ground measurements. 
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Figure S8. Selected typical densely populated areas with multiple closely located sites in China, 

where the number in brackets indicates the number of sites within the area. 
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Figure S9. Variances in surface O3 concentrations among the sites within the six selected 

populated areas in China. 
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Appendix Tables 

Table S1. Summary of the main parameters of tree-based machine-learning models. 
Model Parameter Value 
AdaBoost input_data tabular data 

n_estimators 200 
learning_rate 0.1 
random_state 0 

DT input_data tabular data 
min_samples_split  2 
random_state 0 

GBDT input_data tabular data 
n_estimators 200 
alpha 0.5 
max_depth 5 
learning_rate 0.1 
min_samples_split 2 
random_state 0 
loss ‘squared_error’ 

CatBoost input_data tabular data 
iterations 800 
depth 6 
learning_rate 0.1 
random_state 0 

XGBoost input_data tabular data 
objective ‘squarederror’ 
n_estimators 2000 
max_depth 5 
subsample 0.8 
learning_rate 0.1 
colsample_bytree 0.8 
gamma 0 
reg_alpha 0.1 
reg_lambda 0.1 
random_state 0 

RF input_data tabular data 
n_estimators 200 
min_samples_split 2 
random_state 0 

LightGBM input_data tabular data 
objective ‘regression’ 
num_leaves 250 
n_estimators 2000 
max_depth 10 
min_child_samples 20 
min_child_weight 0.001 
learning_rate 0.1 
bagging_fraction 1.0 
feature_fraction 0.8 
random_state 0 

ET input_data tabular data 
estimators 200 
min_samples_split 2 
random_state 0 
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DF input_data tabular data 
n_estimators 2 
n_trees 100 
max_layers 20 
criterion ‘squared_error’ 
predictor ‘xgboost’ 
random_state 0 
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Table S2. Summary of the main parameters of deep-learning models used in this study. 
Model Parameter Value 
MLP input_data tabular data 

input size 25 
hidden layers 1 
hidden size 64 
data normalization ‘StandardScaler’ 
train epochs 50 
batch size 64 
activation function Relu() 
output activation Linear() 
learning rate 0.001 
optimizer  Adam() 
loss function MAELoss() 

DBN input_data tabular data 
input size 25 
RBM num 2 
hidden sizes  30, 10 
data normalization ‘StandardScaler’ 
train epochs 100 
batch size 64 
activation function Sigmoid() 
output activation Linear() 
learning rate 0.001 
optimizer  Adam() 
loss function MAELoss() 

ResNet input_data tabular data 
input size 25 
Residual Block num 2 
data normalization ‘StandardScaler’ 
train epochs 50 
batch size 64 
activation function Relu() 
output activation Linear() 
learning rate 0.001 
optimizer  Adam() 
loss function MAELoss() 

CNN input_data tabular data 
input channel 1 
input size 25 
kernel size (1, 3) 
conv layers 3 
hidden size 16, 32, 64 
data normalization ‘StandardScaler’ 
train epochs 50 
batch size 64 
activation function Relu() 
output activation Linear() 
learning rate 0.001 
optimizer  Adam() 
loss function MAELoss() 

LSTM 
 

input_data tabular data 
input size 25 
hidden layers 3 
hidden size 90 
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data normalization ‘StandardScaler’ 
train epochs 150 
batch size 256 
output activation  Linear() 
learning rate 0.001 
optimizer  Adam() 
loss function MAELoss() 

ResNeXt input_data tabular data 
input size 25 
cardinality 32 
Residual Layer num 4 
Residual Block num [3, 4, 6, 3] 
data normalization ‘StandardScaler’ 
train epochs 50 
batch size 64 
activation function Relu() 
output activation Linear() 
learning rate 0.001 
optimizer  Adam() 
loss function MAELoss() 
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Table S3. Performance and efficiency comparisons of different 4-dimensional space-time (4D-
ST) tree-based machine- and deep-learning models for estimating surface O3 concentrations at 

17:00 LT in China based on the station-CV approach. 
Category Core model R2 Slope RMSE MAE Speed (s) Memory (GB) 
Tree-based 
machine 
learning 

AdaBoost 0.492 0.451 38.94 30.80 504.45 0.1068 
DT 0.725 0.855 30.12 20.22 12.16 0.0319 
GBDT 0.753 0.739 26.86 20.23 1000.68 0.1045 
CatBoost 0.783 0.769 25.19 18.96 21.24 0.1482 
XGBoost 0.815 0.803 23.27 17.40 247.53 0.1314 
RF 0.863 0.826 20.13 14.45 324.62 6.0102 
LightGBM 0.873 0.857 19.29 14.19 47.18 0.1495 
ET 0.875 0.792 20.36 14.64 64.81 10.3010 
DF 0.888 0.888 18.08 12.86 9491.03 11.3705 

Deep 
learning 
 

DBN 0.716 0.735 28.85 21.90 156.81 0.0624 
MLP 0.724 0.705 28.47 21.62 175.11 0.0930 
CNN 0.777 0.783 25.79 19.40 1282.64 0.1698 
LSTM 0.784 0.796 25.14 18.81 3719.45 0.1556 
ResNet 0.799 0.820 24.23 18.09 2628.15 1.0659 
ResNeXt 0.820 0.835 22.94 17.01 8144.82 1.1123 

AdaBoost: Adaptive Boosting; DT: Decision Trees; GBDT: Gradient Boosting Decision Tree; CatBoost: Categorical 
Boosting; XGBoost: eXtreme Gradient Boosting; RF: Random Forest; LightGBM: Light Gradient Boosting Machine; 
ET: ExtraTrees; DF: Deep Forest; MLP: Multilayer Perceptron; DBN: Deep Belief Network; ResNet: Deep Residual 
Network; CNN: Convolutional Neural Network; LSTM: Long Short Term Memory; ResNeXt: ResNet Next. 
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Table S4. Performance and efficiency comparisons of different 4-dimensional space-time (4D-
ST) tree-based machine- and deep-learning models for estimating surface O3 concentrations at 

17:00 LT in China based on the block-CV approach. 
Category Core model R2 Slope RMSE MAE Speed (s) Memory (GB) 
Tree-based 
Machine 
Learning 

DT 0.555 0.749 39.55 29.06 12.78 0.0366 
AdaBoost 0.572 0.494 39.94 31.60 359.81 0.0106 
XGBoost 0.745 0.729 27.88 20.90 403.70 0.1265 
GBDT 0.747 0.716 28.55 21.01 894.83 0.1056 
RF 0.763 0.729 27.62 19.95 335.28 5.8400 
LightGBM 0.765 0.750 26.75 20.01 48.75 0.2034 
CatBoost 0.771 0.757 26.41 19.71 14.22 0.1939 
ET 0.774 0.737 26.34 19.48 67.44 7.4371 
DF 0.775 0.751 26.87 19.33 9914.96 10.6786 

Deep 
Learning 
 

MLP 0.714 0.694 30.33 22.69 365.61 0.0934 
DBN 0.731 0.716 29.50 21.82 628.19 1.9854 
ResNet 0.737 0.733 29.06 21.11 2453.79 1.0668 
ResNeXt 0.747 0.747 28.48 20.68 7165.49 1.2687 
LSTM 0.752 0.731 28.25 20.60 4367.56 0.1539 
CNN 0.754 0.770 28.12 20.38 3681.92 1.1686 

AdaBoost: Adaptive Boosting; DT: Decision Trees; GBDT: Gradient Boosting Decision Tree; CatBoost: Categorical 
Boosting; XGBoost: eXtreme Gradient Boosting; RF: Random Forest; LightGBM: Light Gradient Boosting Machine; 
ET: ExtraTrees; DF: Deep Forest; MLP: Multilayer Perceptron; DBN: Deep Belief Network; ResNet: Deep Residual 
Network; CNN: Convolutional Neural Network; LSTM: Long Short Term Memory; ResNeXt: ResNet Next. 
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