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ABSTRACT

A new technique for estimating broadband reflectance from Advanced Very High-Resolution Radiometer
(AVHRR) narrowband reflectances in channel 1 and 2 is developed. The data used are simultaneous and
coincident narrowband and broadband measurements made by the AVHRR and Earth Radiation Budget Ex-
periment ( ERBE) radiometers aboard NOA44-9 during four days in July 1985 in the region north of 60°N. The
limitations and inefficiency of classical regressional methods when applied to datasets with high spatial auto-
correlation, which is often the case for remotely sensed data, are discussed. A statistical variable, Moran’s 7, is
introduced, which is specifically designed for testing against a null hypothesis of spatial independence. On the
basis of Moran’s 7 and a correlogram analysis of the spatial autocorrelation of measured reflectances, the data
are sampled to provide a spatially independent dataset. In addition to sampling, the data are also screened with
respect to spatial homogeneity. Both scene-dependent and scene-independent regressional models are developed
that are based on these spatially independent datasets. The rms errors of the predicted broadband reflectance
are found to be 1.0, 1.8, 2.0, and 3.1 for the ocean, land, ice-snow, and cloud data, respectively. The effects of
scene discrimination and solar and viewing geometry on the regressions are investigated, and comparisons are
made between two-channel and single-channel models. The use of two solar channels is found to give a significant
improvement in the predicted broadband reflectance for datasets in which there is no scene discrimination, a
small improvement for measurements over land, and no improvement for the other homogeneous scene types.
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Geometric factors are found to have no significant effect on the regressions.

1. Introduction

With the prime purpose of providing cloud imagery
for weather analysis and forecasting, operational sat-
ellites have provided continuous coverage of the earth
for more than 30 years and will undoubtedly continue
to do so. Though the observations are limited to narrow
spectral intervals, their use for estimating radiation
budgets both at the top of atmosphere and at the earth’s
surface has been attempted extensively on the basis of
the correlation between narrowband and broadband
radiances (Gautier et al. 1980; Gruber et al. 1983; Nu-
nez et al. 1984; Dedieu et al. 1987). All of the inves-
tigations were based on the very crude assumption that
the visible albedo is equal to the total albedo. Despite
this, some results have proved to be useful for a variety
of problems in climate studies (Ohring and Gruber
1983), since the narrowband data comprise the longest
continuous dataset over the globe with high and ho-
mogeneous resolution. However, as pointed out by
Stowe (1988), successful monitoring and modeling of
the earth’s climate requires that high-quality broadband
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measurements of the earth’s radiation budget (ERB)
be made on a continuous basis for at least several de-
cades. Measurement programs, such as those by Nim-
bus-7 and the Earth Radiation Budget Experiment
(ERBE), have begun to address this problem, but these
programs were experimental and of limited term and
there is no plan to recommence broadband measure-
ments until the latter part of this decade. It is because
of this problem that Stowe suggested that estimates of
broadband fluxes from narrowband data should serve
as surrogate broadband data to fill gaps in the time
record of broadband measurements. To achieve these
objectives, modeling and empirical studies are needed
to elucidate the factors that govern the relationship be-
tween narrowband and broadband fluxes.

In theoretical studies, the conversion from narrow-
band to broadband quantities is typically accomplished
by incorporating the narrowband filter functions into
an atmospheric radiation model and then performing
numerical simulations for a wide variety of atmospheric
conditions and surface types. The model results serve
as a database upon which regressional analysis is con-
ducted (Stum et al. 1985; Cess and Potter 1986; Pinker
and Ewing 1986, 1987; Ellingson et al. 1989). However,
as pointed out by Davis et al. (1984), not only is it an
ambitious task to utilize a full-fledged radiative transfer
model for such a large number of simulations, it is
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difficult to capture in the simulated data realistic
variabilities of water vapor amounts, clouds, surface
anisotropy, etc. Therefore, the simulated data may not
represent conditions that are typical of those that ac-
tually exist.

Alternatively, regressional equations may be derived
from actual coincident measurements of narrowband
and broadband reflectances. Minnis and Harrison
(1984), for example, matched Nimbus-7 ERB short-
wave radiometer data with GOES visible measurements
(0.55-0.75 um), obtaining quadratic regressional
equations for land, ocean, and clouds. A pair of nar-
rowband and broadband measurements was considered
as being quasi-simultaneous and quasi-collocated if
they were made within 15 min of each other and if the
solar zenith angle, viewing zenith angle, and relative
azimuth angle between two measurements differed by
less than 2.5°, 7.5°, and 15°, respectively. Wydick et
Nimbus-7 ERB broadband data and NOAA-7 Ad-
- vanced Very High-Resolution Radiometer (AVHRR)
narrowband data in channels 1 (0.58-0.68 ym) and 2
(0.72-1.10 um). Since the narrowband and broadband
measurements were made from different spacecraft
flying in different orbits, the number of matching data
pairs was limited.

ERBE broadband measurements and AVHRR nar-
rowband measurements from NOAA-9 are ideally
suited to address this problem, since both sets of ra-
diometers are aboard the same spacecraft and scan in
a similar mode across the satellite track. The rate of
collection of data from collocated, coincident ERBE
and AVHRR pixels is very much larger than is the case
when the instruments are mounted on different space-
craft, and thus adequate statistics may be obtained from
only a few days of data. In order to optimize the nar-
rowband to broadband conversion, the data are usually
grouped according to scene type. In this respect,
AVHRR data have an additional advantage compared
to the previously cited approaches in that multichannel
AVHRR data are more suitable for scene identification.
In this study we are concerned with radiation budgets
at high latitudes, and therefore scene types are deter-
mined from algorithms previously developed for this
purpose (Sakellariou and Leighton 1988; Sakellariou
et al. 1990; Li and Leighton 1991). As pointed out by
Payette (1989), radiances from neighboring pixels are
highly correlated. This correlation must be accounted
for in the regression analysis. An objective sampling
method is described that ensures only spatially inde-
pendent data are included in the analysis.

The particular problems associated with the appli-
cation of regressional methods to spatially autocorre-
lated data and an approach to the solutions of these
problems are introduced in section 2. Section 3 presents
autocorrelation analyses of the measured reflectances.
Some screening constraints and a sampling method
based on the autocorrelation analyses are proposed in
section 4. The regression analyses that relate broadband
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and narrowband reflectances are given in section 5.
The results are summarized in section 6.

2. Spatial autocorrelation and regression analysis

Classical regressional analyses based on least-squares
estimation were used in all the previously cited studies
that empirically determined the relationship between
narrowband and broadband reflectances or albedos.
One of the inherent assumptions of this approach is
that the residuals from the regression are independent.
A failure to comply with this requirement may have
several effects on the regression analysis. First, use of
an ordinary least-squares (OLS) method will yield in-
efficient estimates of the regression coefficients in the
sense that they no longer generate minimum variance.
Second, the estimates of confidence intervals and the
various tests of significance commonly employed
would no longer be valid. Third, the estimate of the
standard errors of the regression may be seriously un-
derestimated, leading to a spurious impression of ac-
curacy (Chatterjee 1977; Miron 1984). The assump-
tion of independence among the residuals is especially
likely to be violated in such highly spatially autocor-
related data as are obtained from satellite measure-
ments. Preliminary studies of the spatial autocorrela-
tion among ERBE measurements suggested that ob-
servations should be separated by about 2000 km to
be completely independent of each other (Payette
1989).

To characterize the spatial dependence, certain sta-
tistics known as spatial autocorrelation are necessary
to provide basic information about the distribution of
the data that is not available from other descriptive
statistics such as the mean and variance. Autocorre-
lation statistics provide a numerical summary about
how the data are arranged in the space in a form that
is useful for statistical testing. Unlike the mean and
variance, autocorrelation statistics are not only func-
tions of the data values but are also functions of the
arrangement of those values in space. The arrangement
is described by a so-called weighting function that as-
signs values to pairs of locations that depend on their
arrangement in space (Odland 1988).

One of the autocorrelation statistics specifically de-
signed for testing hypotheses of spatial dependence is
called Moran’s I (Cliff and Ord 1973), defined as
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where x; and Xx; are values of the variable X in a pair
of regions i and j, n is the sample size, and w;; is a
weighting function. In fact, Moran’s I is just a corre-
lation coefficient between the weights w; and the in-
dividual cross products X;; = (x; — X) (x; — X), since
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the numerator is their covariance and the denominators
are the appropriate normalizing factors. Thus, Moran’s
I is a means of comparing w; and Xj; to ascertain if
patterns of variation in the cross product are similar
to patterns of variation in the weight (Odland 1988).
A suitable weighting function should be able to char-
acterize the variation of the cross product over space.
Choosing an appropriate weighting function depends
both on a priori physical considerations and on the
analysis of the autocorrelation of the cross product over
space. For certain applications it can be as simple as a
one or zero step function; that is, w; = 1 if / and j are
neighbors and 0 otherwise. The distance between two
measurements of reflectance is a major factor that in-
fluences their correlation. The particular form of the
weighting function for the present data will be given
in the following section.

As in classical hypothesis testing, tests for spatial au-
tocorrelation require knowledge of the statistical dis-
tribution of the selected statistic under the null hy-
pothesis of random and independent distribution of
the data in space. The test of spatial autocorrelation is
based on the comparison between the value of the au-
tocorrelation statistic calculated from the samples and
the theoretical value expected under null hypothesis.
While there are many forms of spatial autocorrelation
statistics, only a few, including Moran’s I, have well-
defined distributional properties that make it possible
to use them in conventional statistical tests. A major
contribution of Cliff and Ord (1973) has been a thor-
ough specification of the distributional properties of
Moran’s I. Moran’s I was proved to be asymptotically
normally distributed as » increases, with mean and
variance for randomly distributed data given by
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Provided that the appropriate weighting function is
selected, it follows from (2) that the expected value of
I for data that is not spatially correlated approaches 0
as the number of observations increases. If # is not too
small, positive and negative values of I indicate that
the variable under study is, respectively, positively or
negatively autocorrelated. For w; symmetric with re-
spect to i and j, the expressions for S| and S, simplify
to
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Based on these parameters, significance tests can be
performed against a null hypothesis that the data are
not spatially correlated. More specifically, the calcu-
lated value of I should be equal to E(J) within the
limits of statistical significance if the data are spatially
independent. If the calculated value exceeds E(7) sig-
nificantly, then the x; are spatially dependent.

In addition to having well-defined statistical prop-
erties, Moran’s I has the feature of not requiring the
data to be equally spaced or continuous. This is of
special importance here, since after being subjected to
several constraints and sampling as discussed in section
4 the data used in the regressional analysis may be
distributed quite irregularly.

If the spatial autocorrelation is found to be signifi-
cant, a simple solution is to remove the spatial auto-
correlation by selecting a sampled subset of the data,
thus allowing application of a classical regressional
analysis (Cliff and Ord 1981). The use of Moran’s /
provides a convenient and objective sampling strategy.

In the following section, spatial autocorrelation
analyses, or correlogram analyses, are employed to de-
termine the weighting function to be used in the cal-
culation of Moran’s I and also to determine the sam-
pling scheme.

3. Correlogram analysis

A correlogram is a graph of the variation of auto-
correlation coefficient with spatial lag. Correlogram
analyses of shortwave and longwave ERBE radiances
measured at low latitudes were conducted by Payette
(1989). The values of the autocorrelation coefficients
are closely related to the radiative features specific to
the region and season under study. Both the cloud cli-
matology and underlying surface types at low latitudes
are quite different from those at high latitudes; this will
lead to different spatial characteristics of the reflectance
in the two regions.

The spatial autocorrelation coefficient p is defined
as the ratio of the autocovariance or cross product di-
vided by the variance

. cli,m)
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where R denotes the reflectance and subscript, i the
position of the initial pixel across the track, j the pixel
position along the track, m the lag, and » the number
of scan lines.

The autocorrelation coefficient p(Z, m) ranges from
—1 to 1. The spatial lag may be expressed either in
terms of distance or pixel number. Since the dimen-
sions of pixels are different in the along- and across-
track directions, the spatial autocorrelation coefficients
expressed in terms of pixel number will be different in
the two directions. Furthermore, since the pixel di-
mensions vary with viewing zenith angle, the autocor-
relation coefficient for a particular lag expressed in
terms of numbers of pixels will depend on the initial
pixel position. Accordingly, the autocorrelation coef-
ficients are calculated as functions of the lag for different
across-track positions of the initial pixel. From each
across-track scan and for each value of m, two pairs
of points are obtained, the initial pixel in each pair
being located symmetrically on either side of nadir.
For the initial pixel at nadir, the two pairs are obtained
by selecting the lagged pixels located m pixels to the
left and right of nadir. For the initial pixel off nadir,
one pair is obtained by selecting the initial pixel to the
left of nadir and the lagged pixel to the right of the
initial pixel and the other by selecting the initial pixel
to the right of nadir and the lagged pixel to the left of
the initial pixel (Fig. 1). Thus, pairs of pixels with the
same displacement from nadir and same lag expressed
in numbers of pixels have the same actual separation.

The data that are subjected to the correlogram anal-
ysis are ERBE broadband shortwave radiances from
all passes on 1, 10, 19, and 29 July 1985 in the region
north of 60°N for solar zenith angles srnaller than 82°.
For each day there are approximately 14 passes, each
pass containing 220 ERBE scan lines. There are 62
pixels in each ERBE scan line, but near the edges of
each scan there are always a few pixels that are flagged
as having unreliable measurements. For the sake of
uniformity, only the 51 pixels closest to nadir are in-
cluded in the analysis. The largest across-track lag that
is considered is 25 pixels. Although correlation coef-
ficients along the track could be calculated for lags as
large as 220 pixels, the sample size for these long lags
would be small, and hence the autocorrelation coefhi-
cient along the track is calculated for a maximum lag
of 30 pixels.

Figure 2 shows the autocorrelation coeflicients plot-
ted against centroid-to-centroid distance for the com-
plete dataset (5.5 X 10° pixels). The autocorrelation
coefficient decays gradually to a value of about 0.2 at

JOURNAL OF APPLIED METEOROLOGY

VOLUME 31

ACROSS - TRACK

i 3| INITIAL
PIXEL
i,j+3

INITIAL‘.
PIXEL >«

-~ \ /". i!j*z

\ l
r\\ m=‘2 /\ m‘=2 ;M s

INITIAL

INITIAL| 2
PIXEL PIXEL

Iy)
ALONG-TRACK

FiG. 1. Diagram showing the selection of pixel pairs for along- and
across-track autocorrelation analyses. The position of pixels across
and along the satellite track are indicated by i and j, respectively.
The number of lagged pixels is denoted by m.

800 km, confirming the observations of Payette (1989)
that measurements separated by a few hundred kilo-
meters cannot be treated as independent samples. It is
also evident that the autocorrelation coefficients com-
puted along and across the satellite track are very sim-
ilar. As indicated by the solid line, they can be expressed
as a simple exponential function of the form

py = 1.00217%, (12)

where d; is the separation in kilometers between pixels
iand j. Since this function describes the spatial pattern
of the autocorrelation so well, it is selected as the
weighting function for the calculation of Moran’s I;
that is,

(13)

Wi = pjj.

In order to establish a suitable scheme to sample the
complete dataset, information is needed on the vari-
ation of the spatial autocorrelation coefficient with
lagged pixel number rather than distance.

Figure 3 shows the autocorrelation coefficients plot-
ted against the number of lagged pixels along the track
for various across-track locations. The line numbers
denote the across-track positions where the along-track
autocorrelation coefficients were calculated, 1 repre-
senting along track at nadir and 2, 3, 4, 5, and 6 de-
noting positions that are 5, 10, 15, 20, and 25 pixels
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FIG. 2. Autocorrelation coefficient p as a function of lagged distance
d along () and across (O) the satellite track. The curve shows the
fit to the data points given by the function p = 1.0021 . Data are
from all passes on 1, 10, 19, and 29 July 1985 in the region north of
60°N.

away from nadir, respectively. A comparison of the
various curves shows no substantial difference in along-
track coefficient with across-track position as long as
the displacement from nadir is less than 20 pixels (line
5), corresponding to a viewing zenith angle of 52°. At
viewing zenith angles larger than this, the relatively
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F1G. 3. Autocorrelation coefficient versus lagged pixel number along
the satellite track calculated at different initial positions across the
track. The lines numbered 1, 2, 3, 4, 5, and 6 are for initial pixels 0,
5, 10, 15, 20, and 25 pixels away from the nadir, respectively.
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large pixel size seems to be responsible for a more grad-
ual decrease of autocorrelation. The spread between
curves 1 to 5 may be taken as a measure of the upper
limit of the uncertainty in the value of p.

Shown in Fig. 4 are the across-track correlograms
for different positions of the 1initial pixel. The consid-
erable differences between the various curves show that
the autocorrelation coefficient depends not only on the
lag expressed in terms of numbers of pixels but also
on the initial position. The autocorrelation coeflicients
with origin near the edges of a swath decay very quickly
for the first few lagged pixels and then more and more
slowly. In comparison, the coefficients calculated for
an origin near nadir decrease fairly uniformly. These
differences are easily explained in terms of changes in
centroid-to-centroid distances between pixels for dif-
ferent pixel locations.

The variation of the autocorrelation coefficient with
lagged pixel number 7 can also be expressed as an ex-
ponential function

p=a "

(14)
Figure S shows exponential fits to the along- and across-
track autocorrelation data that comprise lines 1 and 6
in Figs. 3 and 4. The values of a range from 1.08 to
1.27 for the across-track coefficients and from 1.03 to
1.06 for along-track coefhicients.

4. Data for narrowband to broadband conversion

a. Match-up of AVHRR and ERBE measurements

From the latitude and longitude information con-
tained in both the AVHRR global area coverage (GAC)
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F1G. 4. Same as Fig. 3, but with lags taken across the satellite track.
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The curves have the form p = a™", where N is the pixel lag.

and ERBE datasets, the AVHRR pixel that is closest
to the center of each ERBE pixel is identified. The
distance between the centers of the AVHRR pixel and
the ERBE pixel is generally less than 2 km, but if it is
greater than 5 km the ERBE data is flagged and not
used. The array of 8 X 8 AVHRR (GAC) pixels cen-
tered on the closest pixel is assumed to correspond to
the ERBE pixel.

b. Scene identification

Separate conversion functions are required for each
distinct scene type. For the region of interest in this
work, the relevant scene types are ocean, land, ice/
snow, and cloud. Because of the difficulty in distin-
guishing between cloud and snow- and ice-covered
surfaces on the basis of broadband shortwave and
longwave radiances, ERBE identified scene types are
not reliable for this region (Li and Leighton 1991).
Scene type corresponding to an ERBE field of view is
determined by applying the method of Sakellariou et
al. (1992) to the 64 AVHRR pixels that correspond in
the manner described above to each ERBE pixel. If
95% (i.e., 58) or more of the AVHRR pixels are found
to be cloudy, the ERBE pixel is classified as being over-
cast. If 95% or more of the pixels are clear ocean, land,
or snow/ice, the ERBE pixel is classified as being clear
and of the appropriate surface type; otherwise the
ERBE pixel is discarded.

¢. Homogeneity constraint

After scene identification, a homogeneity constraint
is applied. For each array of 64 AVHRR pixels matched
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to an ERBE pixel, the dispersions of the radiances in
channels 1 and 2, defined as the ratio of the standard
deviation to the mean, are calculated. In order to im-
pose an even greater degree of homogeneity on the
ERBE pixels than is required in the scene identification
step, only pixels for which the dispersions in both
channels are less than 0.1 are retained. This procedure
resulted in the rejection of 62%, 68%, 65%, and 72%
of the ocean, ice, land, and overcast pixels in the sam-
pled datasets, respectively. Imposition of this condition
increases the probability that the scene is uniform,
eliminates the need for the application of the ERBE
point spread function to the AVHRR radiances to ob-
tain an appropriately weighted mean AVHRR radiance
over the ERBE pixel, and reduces sensitivity to geo-
graphic matching errors.

d. Sampling

The sampling procedure is designed to be objective,
simple to implement, and efficient. It involves a trial
and error approach in which the full dataset is first
sampled with the requirement that the sampled data
have an autocorrelation less than some large initial
value of p. The sampled data are then subjected to the
scene identification and homogeneity constraints.
Moran’s I'is computed for the sampled, homogeneous,
single scene-type data and tested against the null hy-
pothesis that the data are spatially independent. If the
hypothesis is rejected, a smaller value of the autocor-
relation coefficient is selected and the procedure re-
peated. The decision to reject or accept the hypothesis
is made by determining whether the calculated standard
normal deviation defined by

_ I-E()
" [var(D)]'?

exceeds the theoretical value D, obtained from a nor-
mal probability distribution at significance level 0.05.
If D > D,, the assumption of spatial independence is
rejected; otherwise the dependence is not significant.
Because of the differences in the along- and across-
track corellograms, the sampling procedure is different
in the two directions. Account must also be taken of
the variations of the across-track autocorrelation coef-

(15)

-ficient with initial pixel position. Shown in Fig. 6 are

contours of the across-track autocorrelation coefficient
plotted as functions of initial pixel position and across-
track lag. The number of pixels to be skipped after
each pixel is selected is determined by the pixel position
and the chosen value of p. For example, if pixels are
to be selected with an autocorrelation coefficient of 0.6
by following the p = 0.6 contour starting from the right
edge of the scan, the sampled pixels would be 25, 23,
20, 17, 13, 8, and 2 pixels to the right of nadir and
continuing with pixels displaced to the left of nadir by
S, 12, 17, 21, and 24 pixels. In order that pixels at all
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viewing zenith angles may be selected, the first pixel
to be sampled from successive scan lines cycles peri-
odically with a step of one pixel from pixel 25 to pixel
20. That is, if the first pixel selected from a particular
scan line is pixel 25 on the right of nadir, on the next
scan line it will be pixel 24 on the left of nadir and so
on to pixel 20, after which the cycle recommences with
pixel 25. Due to the small variability of the along-track
autocorrelation coefficient with an initial position
across track, the number of scan lines that is skipped
is kept constant at the number determined by the value
of p at nadir.

It was found that applying this procedure with an
autocorrelation coefficient of 0.4 produced datasets for
each scene type that were spatially independent at a
confidence level of 95% according to significance tests
based on Moran’s 1. It should be noted that the selected
value of p of 0.4 is a measure of the autocorrelation of
the data before being subjected to the constraints, it is
not a measure of the autocorrelation of the sampled,
homogeneous datasets.

In addition to spatial sampling, temporal sampling
was also imposed by only selecting data from every
second satellite pass. Figure 7 shows the geographical
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FI1G. 7. Geographic distribution of cloudy pixels used for the regression analysis, after scene
discrimination, homogeneity screening, and sampling. The symbols 1, 2, 3, and 4 indicate data

from 1, 10, 19, and 29 July 1985, respectively.
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FiG. 8. Scattergrams of simultaneous and coincident ERBE
broadband and AVHRR narrowband reflectances for ocean, land,
ice/snow, and cloud pixels. Left and right panels correspond to
channel 1 and 2 of AVHRR, respectively.
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distribution of the data finally used in the regression
analysis for overcast pixels. It is significant that the
data from each of the 4 days are homogeneously dis-
tributed over the domain and most importantly that
there is no discernible cluster.

5. Regression analysis
a. Development of the regression models

After being subjected to the screening constraints
and the spatial and temporal sampling described above,
the sizes of the ocean, land, ice~snow, and overcast
datasets are 541, 555, 2040, and 1528 pixels, respec-
tively. Scatter diagrams of simultaneous and coincident
ERBE broadband and AVHRR narrowband reflec-
tances in channels 1 and 2 are plotted in Fig. 8 for the
four pure scene types. Although the relationships be-
tween broadband and narrowband reflectance are quite
different for the four scene types, for single scene types
there appears to be a strong linear relationship between
broadband R, and narrowband reflectances R, and R,
in channels 1 and 2 of the AVHRR. This suggests the

following simple model to estimate broadband reflec-
tance:

Rb=a+b1R, +b2R2. (16)

The coefficients determined from bivariate regression
analyses of measurements made on 1, 10, and 29 July
are given in Table 1, together with measures of the
regression errors. Measurements made on 19 July serve
as an independent dataset to test the model. Also in-
cluded in Table 1 are results of the regression analysis
of the dataset consisting of the combination of the four
individual datasets; that is, with no discrimination ac-
cording to scene type.

It is evident that a very good fit is achieved for ice/
snow with about 97% of the variance of the broadband
reflectance being explained by the regression model.
The rms error and the relative error of the broadband
estimates are 1.8% and 4.5%, respectively. The cloud
model also performs well as is indicated by the ex-
plained variance of 93% and relative error of 6.5%.

TABLE 1. Summary of statistics from the regression analyses with the two-channel model for the estimation of broadband reflectance
based on ERBE and AVHRR data from 1, 10, and 29 July 1985. Except for b, and b, all the values are given in percent.

Coefficients
Sample Explained rms Relative
Scene size a b, b, variance error error*
Ocean 401 2.48 0.490 0.699 82.6 1.0 13.8
Land 423 1.25 0.673 0.518 76.7 1.8 104
Ice/snow 1514 4.53 0.389 0.452 97.2 20 45
Clouds 1140 6.98 0.410 0.448 92.8 3.1 6.5
All 3478 4.42 0.287 0.607 97.7 2.7 7.1

* Relative error is defined as the ratio of rms error over the mean measured broadband reflectance.
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These results are not surprising if one notes the good
linear relationship between narrowband and broad-
band reflectances in Figs. 8e-h. The large spreads in
Figs. 8a—d lead to relatively poor estimates of broad-
band reflectance for ocean and land scenes as is evident
from the small value of the explained variance and
large relative error. The poor performance of regression
model over land is mainly due to the strong spectral
dependence of reflectance on vegetation type (Cess and
Vulis 1989). The cause of the lower predictability of
broadband reflectance over ocean might be due in part
to the greater significance of variability of the atmo-
spheric radiative properties when the surface reflectance
is small. Regression analysis by Davis et al. (1984)
based on simulated data also show that regression
models for snow are better than those for water and
land. The present results may also be compared with
results based on Nimbus-7 and NOAA-7 data reported
by Wydick et al. (1987). For similar regression models,
they obtained rms errors of 1.4%, 2.1%, 4.6%, and 7.5%
for ocean, land, snow, and cloud, respectively. These
values are significantly higher than those from the
present study, especially for ice /snow and clouds. This
can be attributed to their less accurate spatial matching
of the narrowband and broadband measurements and
the relatively large field of view of the Nimbus-7 ra-
diometer compared to the ERBE radiometer. Further-
more, the values of rms error given by Wydick et al.
(1987) are most probably underestimated, since their
data are likely to have had significant spatial correla-
tion.

To see the impact of spatial autocorrelation on the
regression results, the same regression analysis is ap-
plied to the data that are obtained without the sampling
procedure but with the other constraints. The explained
variances for the measurements of ocean, land, ice/
snow, and clouds are 60.4%, 73.8%, 96.8%, and 85.4%,
respectively. It should be noted that when the samples
are not independent, only the explained variance is a
valid measure of the goodness of fit. Both the rms error
and relative error tend to be underestimated because
they depend on the number of degrees of freedom,
which is not equal to, but is significantly smaller than,
the number of measurements (Cliff and Ord 1981).
Compared with the explained variances presented in
Table 1, it is found the regression based on independent
data is much better than that based on the unsampled
dependent data. This is not surprising, since, as dis-
cussed in section 2, OLS is no longer a valid procedure
to obtain the minimum variance.

Comparisons of observed and predicted broadband
reflectances for the datasets that are used to generate
the regression models are shown in Fig. 9. The absence
of systematic deviations between predicted and ob-
served reflectance suggests that the least-squares anal-
ysis is valid and that the linear relationship given by
(16) is appropriate. A similar comparison, but for the
independent test datasets from 19 July, gave results
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FIG. 9. Comparisons of observed and predicted broadband reflec-
tances for data used to determine the regressions: (a) ocean, (b) land,
(c) ice/snow, (d) cloud. Data are from 1, 10, and 29 July 1985.

that were essentially identical in pattern and in mag-
nitude. The rms errors for the independent datasets are
1.1%, 2.1%, 1.9%, and 3.0% for ocean, land, ice/snow,
and cloud, respectively. This suggests that the size of
the datasets used to develop the regression models is
large enough to provide stable regression coefficients.
If the regression models derived from the unsampled
data are applied to the same independent data, the rms
errors are 1.8%, 3.0%, 2.5%, and 4.6% for ocean, land,
ice/snow, and cloud, respectively. These values are
significantly larger than those obtained from the
regression model based on the sampled independent
data,

b. Effects of scene discrimination

Several investigators (e.g., Davis et al. 1984; Pinker
and Ewing 1987) have argued that scene discrimination
is crucial if one is to be able to accurately estimate
broadband reflectance from narrowband measure-
ments. On the other hand, the studies of Wydick et al.
(1987) drew a quite different conclusion. They found
that the accuracy of broadband reflectance estimation
without scene-type discrimination was similar to that
for individual scenes in terms of rms error and even
better in terms of explained variance. This is confirmed
by the present results shown in Table 1. Figure 10 pre-
sents a scattergram of broadband and narrowband re-
flectances for the combination of the four individual
datasets that comprise Fig. 8. Although there is a much
larger spread than is found for any of the pure scenes,
as is clear from the last line of Table 1 and Fig. 11, the
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two-channel scene-independent model is able to give
good predictions of broadband reflectance. It would,
however, be a mistake to conclude that scene discrim-
ination is unimportant in deducing broadband reflec-
tances from narrowband measurements, since, as is
illustrated in Fig. 12, systematic errors are observed
when the scene-independent model is applied to ho-
mogeneous scenes.

c. Contribution of channel 2

Several previous studies have used single-channel
narrowband solar reflectance measurements to deduce
the broadband reflectance. For example, Gruber et al.
(1983) used channel 1 data from the AVHRR and
Minnis and Harrison (1984 ) used GOES visible data.
To assess the benefits of including information from
both channels 1 and 2 of the AVHRR in the regres-
sions, the analyses were repeated using only channel 1
reflectances.

Table 2 presents a summary of the statistics from
the regression analyses based on channel 1 of the
AVHRR. Except for land, the explained variance from
the single-channel regression is almost as large as when
both channels 1 and 2 are used. This is a consequence
of the strong correlation between the two channels for
ocean, ice/snow, and cloud (Fig. 13). Of more signif-

3,5100 e — T —r—y—
w | a 4 b ]
o 8o 4 F .
z ] 1
< L

[&] L 4 - .
w

-

g L

g #

x 40| 4 L .
g {1t ]
520— — F B
» L L

@

O oWl 1t w1 v a1 TR W SN W S B

0 20 40 60 80 100 O 200 40 60 80 100

PREDICTED REFLECTANCE (%)
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FI1G. 12. Same as Fig. 9, but using the scene-independent regression.

icance are the differences in rms errors between the
single-channel and two-channel analyses that are small
for all the pure scenes but significantly larger for the
combined scenes. This suggests that if scene types are
differentiated, there is little advantage to using both
AVHRR shortwave channels to deduce broadband re-
flectance. However, if scene type is not identified, better
estimates of broadband reflectance may be obtained
from the use of both AVHRR shortwave channels.

d. Effects of geometric factors on the regression
coefficients

It may be expected that differences in the anisotropy
of narrowband and broadband reflectances will lead to
the dependence of the regression coefficients on geo-
metric factors. Davis et al. (1984) found from their
simulation studies that the regression coefficients were
insensitive to the solar and viewing geometry. However,
theoretical studies by Stum et al. (1985) show a sig-
nificant dependence of the narrowband to broadband

TABLE 2. Summary of statistics from the regression analyses with
the single-channel model for the estimation of broadband reflectance
based on the ERBE and AVHRR data from 1, 10, and 29 July 1985.

Coefficients
- Explained rms Relative

Scene a b variance error error
Ocean 1.92 1.025 81.6 1.1 14.2
Land 6.93 1.014 63.5 2.2 13.0
Ice/snow -1.94 0.855 96.4 2.3 5.1
Clouds 6.44 0.822 91.7 33 7.0
All 5.75 0.767 94.5 42 11.0
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in channel 1 and channel 2 of the AVHRR.

conversion factor on the viewing and solar zenith an-
gles. Until now, no attempt has been made to address
this problem empirically because of the lack of appro-
priate data. The present datasets contain the values of
the solar and viewing zenith angles and the relative
azimuths and thus are convenient to study the effects
of geometric parameters on the narrowband to broad-
band conversions. In the present data, solar zenith an-
gles are greater than 40° and viewing zenith angles are
less than 70°. Limitations on the range of relative azi-
muth angles experienced in the sun-synchronous sat-
ellite orbit prevent studying its effect on the conver-
sions.

The azimuth-averaged bidirectional reflectance can
be expressed as a polynomial of low order of the pa-
rameter u* defined by

x - _PHo
mt oo’
where p and ug are cosines of viewing zenith angle and
solar zenith angle, respectively (Staylar 1985; Staylor

and Suttles 1986; Vulis and Cess 1989). Accordingly,
each coefficient in (16) is expressed in the form

(17)

a; =C0+C|[l.* +Cz[l,*2. (18)

After expressions of the form given by (18) are sub-
stituted into (16), new regression analyses are con-
ducted. Though reductions in the rms errors are found,
the improvements are so small that they cannot be
considered to be significant. Other functional forms
for the zenith-angle dependence were also tested, but
none produced significant reductions in errors.
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6. Summary

Due to their temporal continuity and global cover-
age, AVHRR measurements can be of special impor-
tance in climate studies. However, broadband radiation
observations are more useful than narrowband mea-
surements such as those from the AVHRR. While
regressional models to convert narrowband to broad-
band reflectances have been developed from previous
empirical studies, they all suffer two major shortcom-
ings. One is that there are large errors in the matching
of broadband and narrowband measurements made
from different satellites. The coincident and simulta-
neous ERBE and AVHRR measurements made from
the operational polar-orbiting satellites such as
NOAA-9 largely overcome this problem. Another
common drawback is the neglect of spatial dependence
among the residuals. Residual independence is a basic
assumption that a conventional regressional model
must fulfill in order to correctly obtain regression coef-
ficients and estimates of regressional errors by means
of the classical least-squares estimator. A strong spatial
dependence among residuals will exist from a regression
based on highly spatially autocorrelated satellite mea-
surements made by scanning radiometers. Moran’s 7,
which is used in this study, is a statistic specially de-
signed for testing the significance of spatial autocor-
relation. Once found to be spatially correlated, the data
are sampled in a way that ensures their efficient use
and limits the effect of correlations. To develop the
sampling strategy and to test for spatial autocorrelation
of the sampled data requires knowledge of the spatial
autocorrelation of reflectance in the unsampled data.
The spatial autocorrelation coefficient was therefore
computed along and across the satellite track using the
data from 1, 10, 19, and 29 July 1985 in the region
north of 60°N. The autocorrelation coefficient grad-
ually decreases from unity toward zero with a scale
length of about 500 km, indicating that two reflectance
measurements must have a large separation to be com-
pletely independent. No significant difference is found
between the autocorrelation coefficients calculated
along and across the satellite track when the autocor-
relation is expressed in terms of distance. However,
since pixel size varies with viewing zenith angle and
the radiometers scan across the track, the autocorre-
lation coeflicient expressed as a function of pixel num-
ber differs in the along- and across-track directions and
also depends on the position of the initial pixel. These
features of the autocorrelation are considered in the
design of a sampling scheme to eliminate spatial de-
pendence.

In addition to sampling, the original data are subject
to narrowband and broadband pixel matching, scene
selection, and homogeneity screening conditions in or-
der to produce spatially independent, homogeneous,
and spatially and temporally matched ocean, land, ice~
snow, and cloud datasets. Broadband reflectance is
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found to differ markedly from the narrowband reflec-
tances in both shortwave channels of the AVHRR, but
it is fairly linearly correlated, which allows prediction
of broadband reflectance from narrowband measure-
ments. Five linear regression functions of R, and R,
are developed using the data from 1, 10, and 29 July
1985. The data from 19 July serve as independent data
to test models. The models for ice/snow and clouds
are found to be able to estimate broadband reflectance
very accurately, the explained variance being 97% and
93%, respectively. The models for ocean and land pro-
duce larger uncertainties. In comparison with previous
models, improvements are achieved in terms of both
accuracy and reliability of the regression analysis, owing
to the better data matchups and the attention paid to
the selection of uncorrelated data.

In addition, the influence on the regression models
of scene identification, inclusion of the channel 2 re-
flectance, and geometric parameters are investigated.
The two-channel scene-independent rnodel provides
virtually as good predictions for undifferentiated scenes
as do the scene-specific models for their corresponding
scene type. However, systematic errors are generated
if the scene-independent models are applied to ho-
mogeneous scenes. The use of channel 2 reflectance
significantly improves the determination of broadband
reflectance by the scene-independent model, produces
a small improvement in the model for land, but has
little impact on the other scene-specific models. Finally,
no significant effect is found on the regressions of either
viewing zenith angle or solar zenith angle.
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