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Abstract. Aerosol–cloud interactions (ACIs) have been
widely recognized as a factor affecting precipitation. How-
ever, they have not been considered in the operational Na-
tional Centers for Environmental Predictions Global Forecast
System model. We evaluated the potential impact of neglect-
ing ACI on the operational rainfall forecast using ground-
based and satellite observations and model reanalysis. The
Climate Prediction Center unified gauge-based precipitation
analysis and the Modern-Era Retrospective analysis for Re-
search and Applications Version 2 aerosol reanalysis were
used to evaluate the forecast in three countries for the year
2015. The overestimation of light rain (47.84 %) and un-
derestimation of heavier rain (31.83, 52.94, and 65.74 % for
moderate rain, heavy rain, and very heavy rain, respectively)
from the model are qualitatively consistent with the potential
errors arising from not accounting for ACI, although other
factors cannot be totally ruled out. The standard deviation
of the forecast bias was significantly correlated with aerosol
optical depth in Australia, the US, and China. To gain fur-
ther insight, we chose the province of Fujian in China to pur-
sue a more insightful investigation using a suite of variables
from gauge-based observations of precipitation, visibility,
water vapor, convective available potential energy (CAPE),
and satellite datasets. Similar forecast biases were found:

over-forecasted light rain and under-forecasted heavy rain.
Long-term analyses revealed an increasing trend in heavy
rain in summer and a decreasing trend in light rain in other
seasons, accompanied by a decreasing trend in visibility, no
trend in water vapor, and a slight increasing trend in summer-
time CAPE. More aerosols decreased cloud effective radii for
cases where the liquid water path was greater than 100 g m−2.
All findings are consistent with the effects of ACI, i.e., where
aerosols inhibit the development of shallow liquid clouds
and invigorate warm-base mixed-phase clouds (especially in
summertime), which in turn affects precipitation. While we
cannot establish rigorous causal relations based on the anal-
yses presented in this study, the significant rainfall forecast
bias seen in operational weather forecast model simulations
warrants consideration in future model improvements.

1 Introduction

Aerosols affect precipitation by acting as cloud condensa-
tion nuclei (CCN) and ice nuclei (IN), which can influence
cloud microphysics (Twomey et al., 1984) and cloud life-
time (Albrecht, 1989). By absorbing and scattering radiation
in the atmosphere, aerosols can alter the thermal and dy-

Published by Copernicus Publications on behalf of the European Geosciences Union.



13968 M. Jiang et al.: Potential influences of neglecting aerosol effects

namic conditions of the atmosphere. The two types of effects
are broadly referred to as aerosol–cloud interactions (ACIs)
and aerosol–radiation interactions (ARIs) (Intergovernmen-
tal Panel on Climate Change, 2013). Both can influence pre-
cipitation (Rosenfeld et al., 2008) and many other meteoro-
logical variables to the extent that they may account for the
considerable changes in climate experienced in Asia over the
past half century (Li et al., 2016).

The impact of aerosols on precipitation via cloud micro-
physics occurs through warm-rain and cold-rain processes,
as reviewed by Tao et al. (2012). In the warm-rain process,
the competition for water vapor leads to a greater number
of cloud drops with smaller sizes as the aerosol loading in-
creases. This decreases the collision efficiency because of the
low fall speed and low droplet-collecting efficiency. Rain for-
mation is thus slowed down. Also, a heavier aerosol loading
narrows the cloud drop-size spectrum, lowering the coales-
cence and collision efficiencies. The delay in precipitation
formation from the warm-rain process enhances condensa-
tion and freezing and, ultimately, leads to the release of extra
latent heat above the 0 ◦C isotherm (Andreae et al., 2004;
Rosenfeld et al., 2008), favoring mixed-phase and cold rain-
fall processes. ARIs also affect precipitation. First, solar ra-
diation absorbed by aerosols may warm up a cloud droplet
enough to evaporate it (Ackerman et al., 2000). Second, the
heating of an aerosol layer due to absorption and cooling of
the surface because of the reduction in radiation reaching
the ground stabilizes the lower boundary-layer atmosphere
and suppresses the formation and development of low clouds
whose occurrence decreases with increasing aerosol loading
(Li et al., 2011). The suppressed convection by ARI may also
lead to rainfall enhancement downwind of polluted places
(Carrió et al., 2010; Fan et al., 2015). The combination of
ARI and ACI leads to a non-monotonic response of rain-
fall to aerosols: increasing first and then decreasing (Jiang
et al., 2016) because the ACI and ARI are most significant
for low and high aerosol loadings, respectively (Rosenfeld et
al., 2008; Koren et al., 2008; Fan et al., 2016).

Most findings concerning the aerosol suppression of
clouds and precipitation are associated with stratocumulus
clouds, cumulus clouds, and shallow convection (Albrecht,
1989; Rosenfeld, 2000; Jiang et al., 2006; Xue and Feingold,
2006; Khain et al., 2008), whereas those of enhanced rain-
fall are associated with deep convective clouds (Koren et al.,
2005; Lin et al., 2006; Bell et al., 2008; Rosenfeld et al.,
2008). Li et al. (2011) used 10 years of ground-based ob-
servations to examine the long-term impact of aerosols on
precipitation and found rainfall enhancement in mixed-phase
warm-base clouds and suppression in liquid clouds. Van den
Heever et al. (2011) underlined the importance of cloud type
in dealing with the impact of aerosols on precipitation.

Forecasting rainfall is most challenging and important in
numerical weather prediction (NWP). In the current Global
Forecast System (GFS) model, aerosols are only considered
in the radiation scheme on a climatological scale. ARIs are

only considered off-line and are not coupled with the dy-
namic system. ACIs have not yet been accounted for. To im-
prove the forecast accuracy, a suite of new physical schemes
are being implemented in the National Centers for Environ-
mental Prediction (NCEP)’s Next Generation Global Pre-
diction System. The goal of modifying the current forecast
model is to improve physical parameterizations in a way that
allows for efficient, accurate, and more complete representa-
tions of physical processes and their interactions including at
least some of the aforementioned aerosol mechanisms.

As a first step, the goal of the present study is to evaluate
current operational GFS forecast results (before any ACIs are
introduced) to see if any systematic precipitation biases bear
resemblance to aerosol perturbations. A gross evaluation of
the GFS model forecast results in three countries (China, the
US, and Australia) being chosen because they cover all hemi-
spheres and represent different atmospheric and environmen-
tal conditions. Moreover, there are the US Department of En-
ergy’s Atmospheric Radiation Measurement (ARM) obser-
vations in all three countries that will be used in follow-on
studies to gain a deeper insight into causal relationships and
the impact of different parameterization schemes. Descrip-
tions of the operational GFS model, datasets, and the eval-
uation strategy and statistical method used are presented in
Sect. 2. Results of the evaluation and possible explanations
are given in Sect. 3. A summary of the research and discus-
sion are given in Sect. 4.

2 Model, datasets, and methodology

2.1 Description of the NCEP GFS model

The NCEP GFS model is a global spectral forecast model
(spherical harmonic basis functions) that has been described
and evaluated over the years (e.g., Kanamitsu, 1989; Yang
et al., 2006; Sela, 2009; Yoo et al., 2012, 2013). Shortwave
and longwave radiation are parameterized using the Rapid
Radiative Transfer Models (RRTMG) RRTMG_SW (v3.8)
and RRTMG_LW (updated based on AER’s version 4.8),
respectively, developed at AER Inc. (http://www.emc.ncep.
noaa.gov/GFS/doc.php). A monthly climatology of aerosols
composed of five primary species similar to those in the
Goddard Chemistry Aerosol Radiation and Transport model
(GOCART; Chin et al., 2002) was used. One or two major
components in each grid (based on climatology) were chosen
for both longwave and shortwave radiative transfer calcula-
tions. In the planetary boundary layer (PBL), a hybrid eddy-
diffusivity mass flux PBL parameterization (Han et al., 2016)
was incorporated to replace the previous PBL scheme (Troen
and Mahrt, 1986; Hong and Pan, 1996). A modified version
(Han and Pan, 2011) of the simplified Arakawa–Schubert
scheme (Arakawa and Schubert, 1974; Grell, 1993; Pan and
Wu, 1995) is used for deep convection in the GFS model.
The new shallow convection scheme (Han and Pan, 2011)
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uses a bulk mass-flux parameterization, which is similar to
the deep convection scheme, but with a cloud-top limit of
700 hPa and different specifications on entrainment, detrain-
ment, and mass flux at the cloud base. A prognostic cloud
water scheme (Sundqvist et al., 1989; Zhao and Carr, 1997;
Moorthi et al., 2001) was added in May 2001. Grid-scale
precipitation is the sink of cloud condensate and is diag-
nostically calculated from cloud condensate. It is parameter-
ized following Zhao and Carr (1997) for ice (snow), evapo-
ration of rain and snow, and the melting of snow and follow-
ing Sundqvist et al. (1989) for liquid water (rain) (GCWM
Branch, EMC, 2003).

2.2 Descriptions of datasets used

The datasets used include Modern-Era Retrospective anal-
ysis for Research and Applications Version 2 (MERRA-2)
aerosol optical depth (AOD) data, Climate Prediction Center
(CPC) unified gauge-based precipitation data, and the NCEP
GFS precipitation forecast data for the year 2015 in three
countries: China, the US, and Australia. Other datasets used
include long-term NCEP Global Ensemble Forecast System
(GEFS) precipitation forecast data, ground-based observa-
tions of precipitation and visibility, water vapor and con-
vective available potential energy (CAPE) sounding datasets,
and satellite-retrieved aerosol and cloud properties for a
small region of Fujian Province in China chosen for more
detailed study.

2.2.1 NASA MERRA-2 aerosol reanalysis

The MERRA-2 aerosol reanalysis (Randles et al., 2016) is
an upgrade of the off-line aerosol reanalysis called MER-
RAero (da Silva et al., 2011; Rienecker et al., 2011; Jiang
et al., 2016). The aerosol module in MERRAero is based
on the GOCART model (Chin et al., 2002). The AOD ob-
serving system sensors extend from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) Neural Net Re-
trieval (NNR) in MERRAero to a combination of the Ad-
vanced Very High Resolution Radiometer (AVHRR) NNR,
the Aerosol Robotic Network (AERONET), the Multi-angle
Imaging SpectroRadiometer (MISR), the MODIS Terra
NNR, and the MODIS Aqua NNR in the MERRA-2 aerosol
reanalysis. More details about the MERRA-2 aerosol reanal-
ysis can be found in Randles et al. (2016). Three-hourly to-
tal aerosol extinction AOD data at 550 nm at a resolution of
0.625◦× 0.5◦ for the year 2015 are used in this study.

2.2.2 CPC unified gauge-based analysis of global daily
precipitation

A unified suite of precipitation analysis products
that include a gauge-based analysis of global daily
precipitation over land was assembled at NOAA’s
CPC (https://climatedataguide.ucar.edu/climate-data/
cpc-unified-gauge-based-analysis-global-daily-precipitation).

Over 17 000 station reports were first collected from multiple
sources. Quality control was performed through comparisons
with other sources of data, e.g., radar, satellite, numerical
models, independent nearby stations, and historical precip-
itation records. Post quality-control corrected reports are
interpolated to create the analyzed fields. Orographic effects
are considered in this step (Xie et al., 2007). Finally, the
daily analysis is constructed and released at a 0.5◦× 0.5◦

resolution (https://climatedataguide.ucar.edu/climate-data/
cpc-unified-gauge-based-analysis-global-daily-precipitation).
Daily precipitation data for the year 2015 are used in this
study.

2.2.3 NCEP GFS/GEFS forecast datasets

The NWP model forecast data used are 3-hourly rainfall fore-
casts from the NOAA NCEP GFS model initialized at 00:00
coordinated universal time (UTC) and accumulated for 24 h
in the three countries chosen for study. The relative humid-
ity (RH) at 850 hPa and the liquid water path (LWP) calcu-
lated following Yoo et al. (2012) are used, corresponding to
the precipitation record in the three countries at a 0.5◦× 0.5◦

latitude–longitude resolution. For the part of the study fo-
cused on Fujian Province, China, the long-term NWP model
reforecast precipitation amount accumulated over the period
of 12 to 36 h from 00:00 UTC at a 1◦× 1◦ latitude–longitude
resolution for the years 1985 to 2010 is used.

2.2.4 Long-term ground-based observations in Fujian
Province, China

Ground meteorological data acquired in Fujian Province
from 1980 to 2009 are used in this study. Figure 1 shows the
locations of the 67 meteorological stations measuring precip-
itation. Sixteen of these stations also collect visibility data
four times a day. Daily mean data are used here. Visibility
has been used as proxy for aerosol loading in China in sev-
eral studies (Rosenfeld et al., 2007; Yang et al., 2013; Yang
and Li, 2014). The main advantage is the long measurement
record under all sky conditions. However, there are some lim-
itations, e.g., the uncertainty due to humans making the ob-
servations and the influence of aerosol hygroscopic growth.
To remove the humidity influence on visibility, visibility was
corrected for RH (Charlson, 1969; Appel et al., 1985) using
the formula adopted by Rosenfeld et al. (2007) when RH falls
between 40 and 99 %:
Vori

Vcor
= 0.26+ 0.4285lg(100−RH) , (1)

where RH is in percent and Vori and Vcor are the orig-
inally uncorrected and corrected visibilities, respectively.
Only non-rainy data were used.

To analyze water vapor and atmospheric stability effects
on precipitation, data collected twice a day (at 00:00 and
12:00 UTC) from three atmospheric sounding stations (Xi-
amen, 24.48◦ N, 118.08◦ E; Shaowu, 27.33◦ N, 117.46◦ E;
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Figure 1. Locations of 67 stations measuring precipitation in Fujian
Province. Plus symbols show the locations of the 16 stations where
visibility measurements are also made. This figure was plotted using
the equidistant cylindrical projection.

Fuzhou, 26.08◦ N, 119.28◦ E) are used to calculate trends in
precipitable water vapor and CAPE. Daily precipitable wa-
ter and CAPE values are the mean of the two measurements
made per day.

2.2.5 Satellite datasets of aerosol and cloud properties
in Fujian Province, China

CloudSat and Cloud Aerosol Lidar and Infrared Pathfinder
Satellite Observation (CALIPSO) data from 2006 to
2010 amassed over Fujian Province (22.5–28.5◦ N, 114.5–
120.5◦ E) are used to extract cloud-top and cloud-base height
information. CloudSat–CALIPSO retrievals of cloud-top and
base heights are converted to temperatures using tempera-
ture profiles from the European Center for Medium-range
Weather Forecasting Auxiliary product (ECMWF-AUX).
The converted cloud-top and cloud-base temperatures are
used for cloud type classification. The classification of differ-
ent cloud types is summarized in Table 1 and introduced in
Sect. 2.3.2. Only single-layer clouds detected by the Cloud-
Sat are chosen here.

Aqua MODIS retrievals of cloud droplet size and LWP
for liquid clouds (clouds with cloud-top temperatures (CTTs)
greater than 273 K) collected over Fujian Province from 2003
to 2012 are used. Errors in satellite retrievals of AOD such
as cloud contamination (Kaufman et al., 2005; Zhang et al.,
2005) introduce uncertainties in the aerosol–cloud relation-
ship (Gryspeerdt et al., 2014a, b). We use MODIS Level 3
AOD with AOD> 0.6 excluded and not the higher-resolution
Level 2 product to reduce the possibility of cloud contamina-
tion (Niu and Li, 2012) in AOD retrievals.

Table 1. Definitions of warm- and cold-base mixed-phase clouds
and liquid clouds.

Cloud-base Cloud-top
temperature temperature

(◦C) (◦C)

Deep mixed-phase clouds > 15 <−4
with warm bases
Shallow mixed-phase 0–15 <−4
clouds with cold bases
Liquid clouds > 0 > 0

2.3 Methodology

2.3.1 Spatial and temporal matching of model and
observation data

CPC unified gauge-based daily precipitation data at a
0.5◦× 0.5◦ latitude–longitude resolution in the three coun-
tries for the year 2015 are used. GFS model grid 004 data
at the same latitude–longitude resolution (0.5◦× 0.5◦) are
also used. Forecast precipitation for a 1-day accumulation
generated at 3-hourly intervals (e.g., at 03:00, 06:00, 09:00,
12:00, 15:00, 18:00, 21:00, 24:00 UTC), starting from the
control time of 00:00 UTC, is used to match the correspond-
ing gauge-based observations. The MERRA-2 aerosol anal-
ysis is not coupled with GFS simulations. Daily MERRA-2
AOD is at a resolution of 0.625◦× 0.5◦ and is interpolated
to the CPC and GFS precipitation resolution using a linear
interpolation method. The spatial and temporal resolutions
of the matched datasets are 0.5◦× 0.5◦ and are generated for
each day. There are ∼ 3 686 000 grid points in total.

For the long-term analysis focused on Fujian, China, the
NWP model reforecast precipitation amount accumulated
over the period of 12 to 36 h from the 00:00 UTC run at 6-
hourly intervals and at a 1◦× 1◦ latitude–longitude resolu-
tion for the years 1985 to 2010 is used to calculate the mod-
eled daily precipitation amount in each grid box. The calcu-
lated daily precipitation amounts from the model forecast are
interpolated to match the long-term ground-based precipita-
tion observations recorded at each of the 67 stations in the
study region of Fujian, China (Fig. 1). There are 9495 days
in total with matched data.

2.3.2 Rainfall level classification and cloud type
classification

Based on the definitions of the China Meteorological
Administration, precipitation data are classified into four
groups according to the daily rain amount: light rain (0.1–
9.9 mm d−1), moderate rain (10–24.9 mm d−1), heavy rain
(25–49.9 mm d−1), and very heavy rain (≥ 50 mm d−1). Rain
gauge data are usually used as reference data in weather fore-
cast and model evaluations because they come from direct
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Table 2. Contingency table.

Observed

Observed yes Observed no

Fo
re

ca
st

Forecast yes Hits False alarms
Forecast no Misses Correct negatives

physical records (Tapiador et al., 2012). The most commonly
used rain detector is the tipping bucket. Once the bucket is
filled (0.1 mm), the bucket is emptied and produces a signal.
This process repeats until precipitation stops. Light rain less
than 0.1 mm cannot be measured. Therefore, the definition of
light rain is 0.1–9.9 mm d−1.

Table 1 summarizes the cloud types considered in the Fu-
jian Province analysis. Deep mixed-phase clouds are defined
as clouds with cloud-base temperatures (CBTs)> 15◦C and
CTTs<−4 ◦C; shallow mixed-phase clouds are defined as
clouds with CBTs ranging from 0 to 15 ◦C and CTTs<
−4 ◦C; and pure liquid clouds are defined as clouds with
CBTs> 0 ◦C and CTTs> 0 ◦C (Li et al., 2011; Niu and Li,
2012).

2.3.3 Evaluation methods

Quantitative precipitation forecast scores developed by
NCEP are used in the evaluation. Table 2 is a contingency
table based on documents from the World Climate Research
Programme (http://www.cawcr.gov.au/projects/verification/
#Methods_for_dichotomous_forecasts). The most com-
monly used statistical scores are the equitable threat score
(ETS), which is also called the Gilbert skill score, and the
bias score (BIAS). The ETS is given by

ETS=
H −Hrandom

H +m+ f −Hrandom
, (2)

where H represents hits, f represents false alarms, and m
represents misses. Hrandom is given by

Hrandom =
(H +m)× (H + f )

TOTAL
. (3)

Its values range from −1/3 to 1 and a perfect score is 1. The
BIAS is expressed as

BIAS=
H + f

H +m
. (4)

Its values range from 0 to infinity. A perfect score is 1. A
BIAS< 1 indicates under-forecasting and a BIAS> 1 indi-
cates over-forecasting.

Under limited ranges of LWP or RH, the top and bottom
one-third of AOD values denote polluted and clean subsets

of data. To obtain the forecast skill under a particular pollu-
tion condition, the ETS and the BIAS for clean and polluted
conditions are calculated as

< ETS>i,j,m = (ETS)i,j,m, (5)
< BIAS>i,j,m = (BIAS)i,j,m, (6)

for the index of precipitation threshold (i), RH or LWP (j ),
and clean or polluted scenario (m).

2.3.4 Statistical method

The standard deviation of the precipitation bias between the
GFS model and CPC gauge data is calculated as

S =

√∑
(x− r)2

n− 1
, (7)

where x is the forecast bias on a single day, n is equal to
364 days, and r is the mean forecast bias. Pearson’s method
is used to calculate the linear correlation coefficient of the
relationship between the standard deviation of the forecast
difference and AOD. A t test is applied with the p value set
to 0.05.

The relative difference between the forecast precipitation
and observations is calculated as

1P =
PGFS/GEFS−POBV

POBV
× 100%, (8)

where PGFS/GEFS refers to the forecast precipitation and
POBV refers to the precipitation from gauge-based observa-
tions.

For the long-term analysis, trends in a particular parameter
are defined as the relative change in the parameter (in %) over
each successive decade (Lin and Zhao, 2009). The Mann–
Kendall method is used to test the significance of the trend.

3 Results

3.1 Evaluation of GFS precipitation using the CPC
gauge-based analysis

3.1.1 Annual mean patterns

The CPC gauge-based precipitation analysis from 2015 is
used to evaluate the GFS precipitation forecast. Figure 2
shows the annual mean precipitation difference between
the GFS model and the CPC analysis for three countries,
i.e., China, the US, and Australia, for the year 2015. Val-
ues above (below) 0 represent the overestimation (under-
estimation) of precipitation. In China (Fig. 2a), the GFS
model overestimates the mean daily rainfall mostly in south-
west China, especially in Sichuan, Yunnan, and Guizhou
provinces (by ∼ 3 mm d−1), and in northwest China, where
rain events are scarcer. Rainfall is underestimated over the
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Figure 2. Annual mean precipitation differences (in mm d−1) be-
tween the GFS model forecast and the CPC analysis in three coun-
tries: (a) China, (b) the contiguous US, and (c) Australia. Data are
from the year 2015. This figure was plotted using the equidistant
cylindrical projection.

Yangtze River Delta region and the eastern coast of China.
In the US (Fig. 2b), the GFS model overestimates precipi-
tation by about 1–2 mm d−1 in most regions and underesti-
mates precipitation along the coastline of the Gulf of Mexico
(by ∼ 1 mm d−1). In Australia (Fig. 2c), the forecast perfor-
mance is good. In northern Australia, the underestimation of
precipitation is around 2 mm d−1. Z scores were calculated

Figure 3. Annual mean relative difference (in mm d−1) between
forecast and observed precipitation for (a) light rain (< 10 mm d−1)
and (b) heavier rain (> 10 mm d−1). Data are from the year 2015.
This figure was plotted using the equidistant cylindrical projection.

to test the significance of the annual mean difference in the
daily rainfall amount between the GFS model forecast and
the CPC analysis. Z values range from −0.4803 to 0.8534
over the grids in the three countries. Because the Z-score
values are less than 2, this indicates that the mean difference
is not significant at the 2σ level. Therefore, the forecast per-
formance of the GFS model with regard to the annual mean
daily rainfall in the three countries is sound with reference to
the gauge-based CPC rainfall analysis.

3.1.2 Different rainfall intensities

Figure 3 shows the annual mean relative difference be-
tween forecast precipitation and observations for light rain
(0.1–10 mm d−1) and heavier rain (> 10 mm d−1). The GFS
model overestimates light rain in most places (Fig. 3a) and
underestimates heavier rain (Fig. 3b). This suggests that both
the overestimation of light rain and underestimation of mod-
erate rain, heavy rain, and very heavy rain contribute to the
forecast bias. Figure 4 shows the mean relative difference be-
tween forecast and observed daily precipitation amounts for
different rain intensities in the three countries for the whole
year (Fig. 4a) and for summer only (Fig. 4b). GFS forecasts
overestimate light rain by 47.84 % and underestimate mod-
erate rain, heavy rain, and very heavy rain by 31.83, 52.94,
and 65.74 %, respectively (Fig. 4a). The underestimation of
precipitation in summer is larger for moderate rain (32.93 %),
heavy rain (55.19 %), and very heavy rain (66.93 %; Fig. 4b).
These model biases are caused by many factors that are be-
yond the scope of this paper to examine. Our focus is on any
potential contribution of neglecting aerosol effects to the bi-
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Figure 4. Mean relative difference in precipitation between
forecast and observed daily light (< 10 mm d−1), moderate
(10–25 mm d−1), heavy (25–50 mm d−1), and very heavy
(> 50 mm d−1) rain amounts for (a) all seasons and (b) summer
only. Data are from the year 2015 and from the three countries
considered in the study.

ases. The relationship between model performance and AOD
is thus further investigated.

3.1.3 Relationship between model performance and
AOD

In principle, the underestimation and overestimation at dif-
ferent rainfall levels (Figs. 3 and 4) may be linked to AOD
conditions, as elaborated in the introduction of previous stud-
ies (cf. the review of Tao et al., 2012). The standard devia-
tion of the forecast bias at each grid point in the three coun-
tries is calculated to further examine the links between the
model bias and AOD. Aerosols tend to polarize precipitation
by suppressing light rain and enhancing heavy rain and thus
increase the standard deviation. The calculation of the stan-
dard deviation of the forecast difference is based on Eq. (7).
Figure 5 shows the relationship between the standard devi-
ation and AOD in the three countries. Each point represents
a grid box. The standard deviation and AOD has a signifi-
cant positive correlation in the three countries with correla-
tion coefficients of 0.5602, 0.6522, and 0.5182 for Australia,
the US, and China, respectively. This suggests that the de-
gree of disparity of the forecast error is larger for grids with
high aerosol loading. The slopes of the best-fit lines are 75.23
for relatively clean Australia (maximum AOD< 0.18), 48.4
for the polluted US (maximum AOD< 0.20), and 8.554 for
heavily polluted China (maximum AOD> 0.60).

The ETS and BIAS are used to examine the model perfor-
mance under clean and polluted conditions for different AOD
bins with fixed LWP (Fig. 6a and c) or RH (Fig. 6b and d)
in the three countries. For a particular LWP or RH condi-
tion, the top and bottom one-third of AOD values are defined
as polluted and clean subsets of data. In Fig. 6a and b, ETS
increases as the LWP or RH increases. This is because large-
scale precipitation is diagnosed from cloud mixing ratios.
The ETS are smaller for the polluted scenario than for the
clean scenario, especially under high-LWP or high-RH con-

Figure 5. Standard deviations of the daily precipitation difference
as a function of aerosol optical depth for (a) Australia (green
points), (b) the United States (blue points), (c) China (red points),
and (d) all three countries. Data are from the year 2015. The slopes
(a) and y intercepts (b) of the best-fit lines through the data in (a)
to (c) are given, as well as the correlation coefficients (r).

ditions. In Fig. 6c and d, the BIAS decreases under polluted
conditions compared with the BIAS under clean conditions.
The decreases in ETS and BIAS under polluted conditions
suggest that AOD influences the model rainfall forecast.

3.2 Potential contribution of aerosols to the model bias

3.2.1 Long-term forecast bias and trends in observed
precipitation in Fujian Province, China

The model performance differs under different conditions,
e.g., initial and dynamic settings, and weather regimes. A
long-term statistical evaluation of rainfall forecasts for Fu-
jian Province is made to mitigate these fluctuations in the
model forecast accuracy. Model data from 1985 to 2010 are
used to calculate the relative difference based on Eq. (8). Fig-
ure 7 shows the mean relative difference between forecast
and observed precipitation for different rain rates from the
67 stations in Fujian Province for all seasons and for summer
only. Figure 7a shows that there is 114.36 % more precipi-
tation forecast by the NCEP GEFS model than observed for
the light rain cases. For moderate rain, heavy rain, and very
heavy rain cases, 29.20, 41.74, and 59.30 % less precipitation
than observed, respectively, was forecast. The underestima-
tion of moderate rain (46.88 %), heavy rain (59.58 %), and
very heavy rain (70.16 %) is even larger in summer (Fig. 7b).

Seasonally averaged trends (percent change per decade)
in daily rain amount and frequency over Fujian Province
from 1980 to 2009 are calculated. Only the results for rain
amount are shown in Fig. 8 because the frequency results
bear a close resemblance. Cross-hatched bars represent data
at a confidence level greater than 95 %. In spring, daily rain
amounts decreased over time, ranging from−4.9 to−15.3 %
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Figure 6. Equitable threat scores (a, b) and bias (BIAS) scores (c, d) as a function of precipitation amount for fixed ranges of liquid water
path (LWP; a, c) and relative humidity (RH; b, d) under clean and polluted conditions. The LWP is divided into two categories: 10–70 g m−2

(light blue) and 70–150 g m−2 (dark blue). Data are from August 2015 in the US, China, and Australia. The RH is divided into two categories:
50–70 % (light green) and 70–100 % (dark green). Data are from the year 2015. For a given LWP or RH condition, the top and bottom one-
third of AOD values are defined as polluted and clean subsets of data, respectively. The solid lines represent the clean scenario, and the dotted
lines represent the polluted scenario. The horizontal red lines in (c) and (d) represent perfect scores.

Figure 7. Mean relative precipitation differences between
forecast and observed daily light (< 10 mm d−1), moderate
(10–25 mm d−1), heavy (25–50 mm d−1), and very heavy
(> 50 mm d−1) rain amounts for (a) all seasons and (b) summer
only in Fujian Province, China. Data are from 1985 to 2010.

per decade for different rain rates. In summer, heavy and
very heavy daily rain amounts increased significantly. For
very heavy rain, the amount and frequencies increased at a
rate of 21.8 and 24.5 % (not shown), respectively. In autumn,
light rain and moderate rain amounts decreased. In winter,
the light rain amount decreased over time. Decreases in light
rain amounts are −8.4 % per decade. Overall, the increas-
ing trends in summertime for heavy and very heavy rain are

most significant. The decreasing trends in light rain in other
seasons are also significant.

3.2.2 Examination of potential contributors

Reasons for the difference between modeled and observed
precipitation are examined in terms of aerosol effects, water
vapor, and CAPE. Time series of visibility over the period
of 1980–2009 are shown in Fig. 9. Visibility has declined
steadily in all seasons but summer, during which there was
a short-lived increasing trend from 1992 to 1997. The lin-
ear declining trends are statistically significant at the 95 %
confidence level. The greatest reduction is seen during the
summer, especially after 1997. Tables 3 and 4 summarize
the correlation between visibility and precipitation amount
and frequency, respectively. A positive (negative) correlation
between visibility and precipitation means a negative (posi-
tive) correlation between aerosol concentration and precipi-
tation. Values with an asterisk represent data at a confidence
level greater than 95 %. For light rain, the correlations be-
tween daily rain amount and visibility (Table 3) and between
rain frequency and visibility (Table 4) are positive for all sea-
sons. For heavy rain to very heavy rain, the correlations be-
tween visibility and daily rain amount (Table 3), as well as
frequency (Table 4), are negative in summer.
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Figure 8. Trends (percent change per decade) in mean daily light rain (< 10 mm d−1), moderate rain (10–25 mm d−1), heavy rain (25–
50 mm d−1), very heavy rain (> 50 mm d−1), and total rain amounts for (a) spring, (b) summer, (c) autumn, and (d) winter in Fujian
Province, China. Data are from 1980 to 2009. Cross-hatched bars represent data at a confidence level greater than 95 %.

Figure 9. Annual mean visibilities in (a) spring, (b) summer, (c) autumn, and (d) winter in Fujian Province, China. Data are from 1980 to
2009. Least squares regression lines at the 95 % confidence level are shown.
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Table 3. Correlation coefficients from linear regressions of visibility and different rain amount types for all seasons.

Rain rate

Light rain Moderate rain Heavy rain Very heavy rain Rain amount

Se
as

on
Spring 0.48∗ 0.51∗ 0.48∗ 0.17 0.40∗

Summer 0.08 −0.16 −0.28 −0.41∗ −0.38∗

Autumn 0.31 0.18 0.26 −0.22 0.11
Winter 0.55∗ 0.26 0.26 0.27 0.29

∗ Values with an asterisk represent data at a confidence level greater than 95 %.

Table 4. Correlation coefficients from linear regressions of visibility and different occurrence frequencies of rain amount type for all seasons.

Rain rate

Light rain Moderate rain Heavy rain Very heavy rain Rain amount

Se
as

on

Spring 0.61∗ 0.51∗ 0.38∗ 0.08 0.67∗

Summer 0.23 −0.13 −0.26 −0.44∗ −0.04
Autumn 0.52∗ 0.18 0.25 −0.10 0.45∗

Winter 0.55∗ 0.22 0.20 −0.05 0.49∗

∗ Values with an asterisk represent data at a confidence level greater than 95 %.

The water vapor amount and atmospheric stability are im-
portant factors related to precipitation. To analyze the poten-
tial contributions of these factors to the forecast bias, their
effects on precipitation are examined. Data from three at-
mospheric sounding stations (Xiamen, 24.48◦ N, 118.08◦ E;
Shaowu, 27.33◦ N, 117.46◦ E; Fuzhou, 26.08◦ N, 119.28◦ E)
collected from 1980 to 2009 are used to calculate trends in
precipitable water vapor and CAPE. Figure 10 shows time
series of annual mean water vapor amount for different sea-
sons. A slight increasing trend is seen in winter, while no
discernible trend is seen in other seasons. This suggests that
the water vapor amount characterizing the study region can-
not explain seasonal variations in precipitation. Time series
of mean CAPE for the different seasons are shown in Fig. 11.
There is an increasing trend in summertime CAPE during the
period of 1980–2009, but the trends are not as strong in other
seasons. The observed increase in rain amount in summer is
in part likely due to an increase in convective precipitation
events that arises from the increasing trend in CAPE.

3.2.3 Impact of aerosols on clouds and precipitation

Aerosols can influence precipitation through warm- and
cold-rain processes (Tao et al., 2012). Cloud droplet size,
LWP for clouds with CTT greater than 273 K, and AOD at
550 nm retrieved from the Aqua MODIS platform over Fu-
jian Province during the period of 2003–2012 are used to ex-
amine the impact of aerosols on cloud effective radius (CER).
Figure 12 shows CER as a function of AOD for liquid clouds
with different LWPs. When the AOD is small (< 0.2), the
CER increases with increasing LWP. For LWP> 100 g m−2,
the CER decreases with increasing AOD, which suggests that

more aerosols decrease CERs. This result is in line with the
two aerosol indirect effects (Twomey et al., 1984; Albrecht,
1989). A greater number of smaller droplets may reduce the
precipitation efficiency and suppress or enhance precipita-
tion, as reviewed by Tao et al. (2012).

Several observational and model studies suggest that
smaller cloud particles are more likely to ascend to above
the freezing level, releasing latent heat and invigorating deep
convection (Rosenfeld et al., 2008; Li et al., 2011) while
suppressing shallow convection. CTTs and CBTs, converted
from CloudSat–CALIPSO measurements of cloud-top and
base heights, in Fujian Province from 2006 to 2010 are used
to study the impact of aerosols on the cloud development of
different clouds. Figure 13 shows CTT as a function of AOD
for liquid and warm- and cold-base mixed-phase clouds. Def-
initions of the different cloud types are summarized in Ta-
ble 1, which is taken from Li et al. (2011). Left-hand ordi-
nates are for liquid clouds, while right-hand ordinates are for
warm-base and cold-base mixed-phase clouds. For all sea-
sons (Fig. 13a), CTTs of warm-base mixed-phase clouds are
lower than those of cold-base mixed-phase clouds. Warm-
base mixed-phase CTTs decrease with increasing AOD,
which indicates that cloud-top heights have increased. For
cold-base mixed-phase clouds, variations in CTT with AOD
are not obvious. For liquid clouds, CTTs increase slightly
with AOD, which means that the development of liquid
clouds is suppressed when AOD increases. The negative
slope of the linear relationship between CTT and AOD for
warm-base mixed-phase clouds and the positive slope of the
linear relationship between CTT and AOD for liquid clouds
are both stronger in summer (Fig. 13b). This suggests that
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Figure 10. Same as Fig. 9, except for precipitable water vapor.

Figure 11. Same as Fig. 9, except for convective available potential energy (CAPE).

aerosols inhibit the development of shallow liquid clouds
and invigorate warm-base mixed-phase clouds, with little in-
fluence on cold-base mixed-phase clouds. These effects of
aerosols on summertime cloud development are more obvi-
ous, likely because convective clouds occur more frequently
during the summertime in Fujian Province.

These results agree with those from a ground-based study
using ARM Southern Great Plains data (Li et al., 2011) and
from tropical region studies using CloudSat–Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation data (Niu
and Li, 2012; Peng et al., 2016). The impact of aerosols
on different types of clouds may lead to light-rain suppres-
sion and heavier-rain enhancement. If the GFS model ne-
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Figure 12. Cloud effective radius as a function of aerosol optical
depth for liquid clouds (clouds with top temperatures greater than
273 K) in Fujian Province, China. Blue triangles represent cases
where the liquid water path (LWP) is less than 50 g m−2, orange
stars represent LWPs between 50 and 100 g m−2, yellow circles rep-
resent LWPs between 100 and 150 g m−2, and purple squares repre-
sent LWPs greater than 150 g m−2. Error bars represent 1 standard
error. Data are from 2003–2012.

glects aerosol effects, overestimations of light rain and un-
derestimations of heavy to very heavy rain may be fore-
cast, especially in summer. For example, Fig. 14 shows time
series of regionally averaged daily modeled and observed
precipitation in 2001. Modeled and observed precipitation
amounts over the region agree well in spring and winter while
modeled precipitation amounts are greater than observations
for light rain in autumn. Note that modeled precipitation
amounts are significantly less than observed precipitation
amounts over the region in summer when deep convective
clouds and heavy to very heavy rain tends to occur. Although
there are many reasons for the difference between modeled
and observed precipitation, these results suggest that to some
extent, the neglect of aerosol effects may contribute to the
model rainfall forecast bias.

4 Summary and discussion

ACIs have been recognized as playing a vital role in pre-
cipitation but have not been considered in the NCEP GFS
model yet. For more efficient and accurate forecasts, new
physical schemes are being incorporated into the NCEP’s
Next Generation Global Prediction System. As a benchmark
evaluation of model results that exclude aerosol effects, the
operational precipitation forecast (before any ACIs are in-
cluded) is evaluated using multiple datasets with the goal of
determining if there is any link between the model forecast
bias and aerosol loading. Multiple datasets are used, includ-
ing ground-based precipitation and visibility datasets, Aqua
Moderate Resolution Imaging Spectroradiometer products,

Figure 13. Cloud-top temperature as a function of aerosol opti-
cal depth for (a) liquid, warm-base mixed-phase, and cold-base
mixed-phase clouds in all seasons and (b) liquid and warm-base
mixed-phase clouds in summer in Fujian Province, China. Dia-
monds represent liquid clouds, squares represent warm-base mixed-
phase clouds, and triangles represent cold-base mixed-phase clouds.
Right-hand ordinates are for warm-base and cold-base mixed-phase
clouds. Data are from 2006 to 2010.

CloudSat–CALIPSO retrievals of cloud-base and cloud-top
heights, Modern-Era Retrospective analysis for Research and
Applications Version 2 model simulations of AOD, and GFS
forecast datasets.

Operational daily precipitation forecasts for the year 2015
in three countries, i.e., Australia, the US, and China, were
evaluated. The model overestimates light rain and underesti-
mates moderate rain, heavy rain, and very heavy rain. The
underestimation of precipitation in summer is even larger.
This is consistent qualitatively with the expected results be-
cause the model does not account for aerosol effects on pre-
cipitation, i.e., the inhibition of light rain and the enhance-
ment of heavy rain by aerosols. The standard deviations of
forecast differences are generally positively correlated with
increasing aerosol loadings in the three countries. Equitable
threat scores and BIAS scores decrease for the polluted sce-
nario.
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Figure 14. Time series of regionally averaged daily rainfall amount in Fujian Province, China, in (a) spring, (b) summer, (c) autumn, and
(d) winter. Dotted lines represent rainfall forecasts from the Global Ensemble Forecast System, and solid lines represent rainfall measure-
ments from gauge-based observations. Data are from 2001.

An analysis of long-term measurements from Fujian
Province, China, was done. Light-rain overestimation and
moderate-, heavy-, and very heavy-rain underestimations
from the Global Ensemble Forecast System were also seen.
The underestimation for stronger rainfall was larger in the
summertime. Increasing trends for heavy and very heavy rain
in summer and decreasing trends for light rainfall in other
seasons were significant from 1980 to 2009. Long-term anal-
yses show that neither water vapor nor convective available
potential energy can explain these trends. Satellite datasets
amassed in Fujian Province from 2006 to 2010 were used to
shed more light on the impact of aerosols on cloud and pre-
cipitation. As implied by the Twomey effect, cloud effective
radii decrease with increasing AOD, which likely suppresses
light rain and enhances heavy rain. This may contribute to the
model forecast bias to some extent. The underestimation of
heavy rain in summer most likely occurs because deep con-
vective clouds occur more frequently during the summertime
in Fujian Province.

It remains an open question how neglecting ACI in the
operational forecast model impacts model biases. This study
is arguably the first attempt at evaluating numerical weather
prediction forecast errors in terms of the potential effects of
aerosols. A more rigorous and systematic evaluation to gain
insights into the model is needed. Toward this goal, case-

based investigations using rich instantaneous measurements
are currently underway.

Data availability. Forecast data are from the NOAA NO-
MADS (https://nomads.ncdc.noaa.gov/) for GFS data
(https://nomads.ncdc.noaa.gov/data/gfs4/) and the NOAA
NCDC (https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-ensemble-forecast-system-gefs) for GEFS
reforecast data. NASA MERRA-2 aerosol data are accessible
from the NASA Global Modeling and Assimilation Office (https://
gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/). The CPC
unified gauge-based analysis of global daily precipitation dataset
is available at https://climatedataguide.ucar.edu/climate-data/
cpc-unified-gauge-based-analysis-global-daily-precipitation.
MODIS data and CloudSat–CALIPSO data are available at
https://modis-atmosphere.gsfc.nasa.gov/MOD08_D3/index.html
and http://www.cloudsat.cira.colostate.edu/, respectively. Ground-
based observations of precipitation amount, visibility, precipitable
water, and CAPE from Fujian Province can be requested
from the Chinese Meteorological Administration’s National
Meteorological Information Center (http://data.cma.cn/). The
retrieved data in the study are available upon request via email:
jiangmj@mail.bnu.edu.cn (Mengjiao Jiang).
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