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H I G H L I G H T S

• Transformer-based deep learning approach (SolarFormer) is proposed for near-real-time solar radiation nowcasting.
• SolarFormer uses geostationary satellite observations as input without need of ground data.
• SolarFormer outperforms other machine learning models in hourly predictions.
• SolarFormer offers extended lead-time forecasting potential due to its efficiency.
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A B S T R A C T

Unpredicted spatial and temporal variability of global horizontal irradiance (GHI) reaching the photovoltaic 
panels presents a challenge for integrating solar power into the grid stably and cost-effectively at a regional scale. 
Therefore, there is a recognized demand for large-scale GHI nowcasting that is both timely and accurate, an area 
where most existing studies fall short. This study introduces the SolarFormer model, which utilizes satellite data 
and incorporates a gated recurrent unit for near real-time GHI estimation. It also includes a space-time trans-
former to provide forecasts with a 3-h lead time at 15-min intervals, maintaining accuracy without significant 
degradation over extended lead times. SolarFormer requires only the selected satellite band information shared 
by GOES-16 and Himawari-8 as the dynamic input, enabling near-real-time application across all areas covered 
by these satellites. This feature makes it accessible and efficient for large-scale energy planning. We validate the 
forecasting result with the ground-measured GHI over seven SURFRAD stations in 2018. The model achieves an 
hourly prediction root-mean-square error (relative root-mean-square error) of 93.8 W/m2 (15.0 %), 118.9 W/m2 

(19.8 %), and 129.1 W/m2 (24.2 %) with 1–3 h lead time respectively. These results demonstrate lower root- 
mean-square error compared to existing hourly updated numerical weather prediction modeling, such as 
High-Resolution Rapid Refresh, and deep learning models, such as ConvLSTM. Moreover, the study highlights the 
potential of SolarFormer for extended lead-time forecasting due to its high computation and memory efficiency 
compared with the above-mentioned models, potentially benefiting long-term energy planning and power 
market bidding and clearing. However, SolarFormer exhibits accumulated bias as the predicted lead time in-
creases and faces challenges in predicting GHI in the early morning due to the invalid visible satellite bands 
during the night, suggesting areas for improvement in future studies.

1. Introduction

Solar energy has risen to prominence, comprising 27 % of renewable 

energy generation in the past decade [5], due to advancements in 
photovoltaic (PV) technologies and the increasing demand for renew-
able energy sources. Global Horizontal Irradiance (GHI) which directly 
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influences the amount of solar radiation received by PV panels is one of 
the most important factors that affect the PV output. However, unlike 
more consistent energy sources such as hydropower or nuclear energy, 
GHI experiences significant variations. These variations stem from pre-
dictable factors such as solar zenith angles (SZA), which induce seasonal 
and diurnal changes, as well as dynamic factors with significant fluc-
tuations caused by cloud cover and atmospheric conditions. For 
example, a disruption in dense and fragmented cloud cover can lead to a 
sudden surge, of approximately 700 W/m2 within a 30-min timeframe 
[35].

Solar PV devices respond rapidly to changes in GHI, and the swift 
fluctuations in PV output pose challenges for utility operators in 
balancing supply and demand in real time. Moreover, unforeseen short- 
term variations can lead to increased financial costs. For instance, op-
erators may need to invest in larger battery storage systems [43] to store 
excess energy during periods of high generation and discharge it during 
dips in production. Additionally, they may incur higher operational 
expenses for peaking power plants [59] that are used to meet sudden 
spikes in demand or compensate for fluctuations in renewable energy 
output. Therefore, accurate and timely short-term nowcasting of GHI is 
necessary to maintain grid stability and cost-effective utilization of solar 
energy [14,35].

Moreover, with the increasing penetration of both macro and micro- 
scale PV, the need for GHI forecasting is no longer spatially insulated at 
specific solar sites. Nowcasting over broad geographic areas will support 
regional energy planning by optimizing energy deployment strategies 
[53]. Operators can strategically place renewable energy infrastructure 
to maximize efficiency and minimize costs [1]. Moreover, large-scale 
and timely forecasting will further refine electricity allocation strate-
gies, mitigate risks associated with weather-related variability [18], and 
prevent emergency power supply issues [33,39,48].

Site-based forecasting has been dominant for short-term predictions 
(0–6 h) in existing studies. Surface sky camera networks are the primary 
data sources for ultra-short-term solar energy forecasts within 1 h [30]. 
Broader short-term forecasts incorporate historical site-specific solar 
radiation records and weather information. Forecasting methodologies 
include numerical weather prediction (NWP) [9], statistical approaches 
[20,57], machine-learning techniques [17,46,63], and deep learning 
strategies with data from neighboring sites [13,19,25,45,51,60]. How-
ever, due to their limited information on surrounding atmospheric 
conditions, site-based forecasts degrade in environments with signifi-
cant variability or for predictions with longer lead times [46].

Satellite platforms provide insights into cloud patterns that surpass 
the capabilities of local, surface-based networks, making them particu-
larly suitable for intraday GHI predictions [35]. Recognizing this, recent 
research has explored integrating satellite data with site-based obser-
vations to enhance short-term forecasting. For example, Choi et al. [8] 
applied a convolutional neural network (CNN) model to NOAA's GOES8 
infrared channels for site-specific GHI predictions. Gallo et al. [16] 
employed 3D CNN and convolutional long short-term memory 
(ConvLSTM) with the spinning enhanced visible infra-red imager 
(SEVIRI) instrument on the Meteosat Second Generation satellite, 
combining it with ground measurements under clear conditions. Qin 
et al. [44] integrated contextual LSTM methodologies with satellite and 
ground data. Paletta et al. [40] achieved high accuracy for ultra-short 
prediction by combining satellite observations, sky images, as well as 
ground measurements using an encoder-decode structure. However, 
these methods still heavily rely on ground measurements, which limits 
their applicability in regional energy planning.

Existing regional-scale forecasting commonly employs NWP models, 
which utilize geographical and meteorological data with notable accu-
racy. However, despite recent advances in hourly-updated NWPs, their 
spatial prediction resolution remains less refined than ideal for photo-
voltaic grid operators [14]. Cloud motion vector (CMV) has been 
developed for satellite-image-based forecasting [32]. The State Univer-
sity of New York at Albany (SUNY Albany) solar forecasting model, 

integrated into the SolarAnywhere software, refines CMV using NWP 
models and boasts a 25.5 % accuracy for 3-h forecasts [41]. However, 
this product is not freely accessible. Kosmopoulos et al. [24] and Car-
pentieri et al., [6] further refined the CMV model, achieving high ac-
curacy across Europe and North Africa. These methods depend on extra 
satellite products for calculating cloud indexes based on radiative 
transfer models (RTM) which constrains its capabilities for near-real- 
time operations and its applicability over broader regions. Data-driven 
machine-learning methods, with cloud movement calculations at their 
core, offer alternative solutions. Pérez et al. [43] applied a CNN model to 
solar energy datasets from Meteosat's SEVIRI, although its applicability 
remains limited to a single test site. Nielsen, Iosifidis, & Karstoft [38] 
employed a ConvLSTM model on effective cloud albedo data from 
SEVIRI over Europe. Xia et al. [56] applied the predictive recurrent 
neural network (PredRNN++) to Advanced Himawari Imager (AHI) 
level-1B radiance data from the Himawari-8/9 satellite over China, but 
the study was validated over cloud cover fraction but not exact GHI 
values and the model degrades significantly after 2 h lead time. None-
theless, both ConvLSTM and PredRNN encounter scalability issues, 
particularly with larger images and higher temporal resolutions that 
strain computational and memory capacities [15].

Though various methods and datasets have been utilized for intra- 
day nowcasting of solar radiation, achieving near-real-time, accurate, 
regional-scale forecasting of GHI with an efficient model structure re-
mains a challenge. Here, we propose a novel approach, SolarFormer, 
that integrates Bi-GRU and the Space-Time Transformer using GOES-16 
data to address these challenges. The high spatial-temporal resolution of 
geostationary satellite GOES-16 provides extensive cloud movement 
information at large scales. SolarFormer utilized the capabilities of the 
existing Bi-GRU model, enabling near-real-time estimation of GHI im-
ages using satellite bands as the only dynamic inputs [26]. The Space- 
Time Transformer part enhances forecasting accuracy by incorpo-
rating a parallel cuboid attention mechanism, which selectively focuses 
on relevant spatial and temporal features, effectively capturing long- 
range dependencies in a computationally efficient manner [50].

This model is designed for direct application in real-time solar 
nowcasting. By leveraging satellite observations as the only dynamic 
inputs, SolarFormer achieves near-real-time GHI nowcasting within the 
satellite's typical update time, usually within 30 min. Moreover, its 
reliance solely on satellite data addresses data scarcity issues that often 
hinder refinements in many machine learning models. Additionally, 
SolarFormer's versatility allows it to utilize both GOES-16 and 
Himawari-8 data inputs, making it applicable across multiple conti-
nents. The novelty and key contributions of our paper can be summa-
rized as follows:

• We proposed the SolarFormer, a novel integration of a space-time 
transformer with a gated recurrent unit (GRU) model, to forecast 
GHI up to 3 h ahead in 15-min intervals at a resolution of 5 km.

• The model utilizes geostationary satellite observations as dynamic 
inputs only, enabling near-real-time forecasting. and facilitating its 
use in large-scale PV management.

• The model demonstrates greater accuracy than baseline models, 
achieving stable forecasting skill of around 25 %, and exhibits 
improved time and memory efficiency over ConvLSTM.

• We conducted detailed investigations into the optimal spatiotem-
poral resolutions and attention mechanisms for transformers in GHI 
forecasting. The results show that divided space-time transformer 
presents the higher accuracy, thus adopted as the final model.

The structure of the paper is as follows: Section 2 examines in situ and 
satellite data. Section 3 details the methodology. Section 4 presents the 
validation results and discusses the limitations. Section 5 presents a 
conclusion.
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2. Data

The input satellite data cover seven surface radiation budget 
observing network (SURFRAD) stations with 600 km × 600 km spatial 
scale each for the years 2018, 2019, and 2021 as shown in Fig. 1. 
Samples from 2019 and 2021 were designated as training data, whereas 
the 2018 samples were used for testing purposes. Additionally, we 
collected the ground measured GHI from the seven SURFRAD stations in 
2018 for validation.

2.1. In situ validation data

In situ data from seven SURFRAD stations within the continental 
United States from 2018 were used to validate the SolarFormer model 
(Fig. 1). SURFRAD captures GHI measurements at 1-min intervals. These 
data were subjected to a quality assessment following the processes 
proposed by Li et al. [28]. Data with a SZA exceeding 85 degrees or with 
zero or negative values were excluded. To reduce potential errors in 
point-scale solar radiation measurement, data were smoothed over 15- 
min windows, centered on the satellite's pass time, as recommended 
by Huang et al. [23]. During this smoothing process, missing values were 
ignored unless all data within the 15-min window were missing; in such 
cases, the specific sample was excluded from validation. Hourly mea-
surements were directly averaged within the corresponding hour 
windows.

2.2. Input data

The input data for the SolarFormer are summarized in Table 1. The 
primary inputs include Geostationary-NASA Earth Exchange (GeoNEX) 
Level 1G (L1G) top-of-atmosphere (TOA) reflectance data and associ-
ated geometry from the Advanced Baseline Imager (ABI) on GOES-16. 
The GeoNEX L1G TOA data are obtainable from NASA's Advanced 
Supercomputing (NAS) Division GeoNEX platform, as detailed by Wang 
et al. [52]. These data provide full-disk scans every 10 or 15 min, 
varying by sensor and year. Fifteen bands, ranging from 0.47 μm to 13.3 
μm, were selected. Following Li et al. [27], we included all shared bands 

from ABI and AHI, which are 15 bands in total. The geometry angles 
include SZA, viewing zenith angle (VZA), and relative azimuth angle 
(RAA). Static elevation information was sourced from GTOPO30.

2.3. Ancillary data

The NOAA GOES-R Series Level 2 clear sky mask was used to analyze 
the performance of the SolarFormer under various cloud-changing 
conditions in Section 4.2. Full-disk versions of the products were 
generated with the same temporal resolution as those of ABI observa-
tions and were retrieved at a horizontal spatial resolution of 2 km. The 
product was matched with the ground measurements after conversion to 
the geographic coordinate system.

3. Methods

3.1. Data preprocessing

Before being fed into the BiGRU part of the SolarFormer, the 19 
variables listed in Table 1 are aligned according to the GeoNEX tiling 
convention, which uses a 600 × 600 km grid at a 1-km resolution. The 
missing value will be filled with − 1 before the normalization. The 
BiGRU will be applied on each grid. The output of BiGRU only have one 
channel for all time steps in one day representing the GHI values. The 
output was reshaped to 600 × 600 images, subsequently aggregated to a 
5-km resolution and divided into four patches, with each patch covering 
an area of 300 × 300 km and containing 60 × 60 pixels. With the whole 
year of observations shaped as 35,040 × 60 × 60 × 1 (where 35,040 is 
derived from a 15-min interval over a year, calculated as 4 intervals per 
hour * 24 h per day * 365 days per year), we subsample each by using a 
window time series size of 24 and an interval of 8. Any subsamples with 
invalid input (SZA greater than 85) are excluded from use.

The input sample for the space-time transformer model consists of 8 
time steps (representing 2 h of input data), and the output sample 
consists of the subsequent 12 time steps (representing 3 h of lead time 
for forecasting). Therefore, each input sample has a size of 8 × 60 × 60 
× 1, and each output sample has a size of 12 × 60 × 60 × 1. To mitigate 

Fig. 1. The distribution of seven surface radiation budget observing network (SURFRAD) stations. The black rectangles outline the Geostationary-NASA Earth 
Exchange (GeoNEX) tile coverage areas.
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the influence of SZA (θ) on diurnal GHI fluctuations, all GHI values 
retrieved from the BiGRUE part, Ri, are initially normalized by the 
theoretically clearest condition, Emax,i, at time i. The normalized tensor is 
represented as the clearness index or clear sky ratio (CSR), csri,

calculated as follows: 

Emax,i = E*COS(θi) (1) 

csri =
Ri

Emax,i
(2) 

E represents the solar constant, which is 1360 W/m2. The closer the 
CSR value is to 0, the denser the cloud is.

3.2. Models

The overall procedure of building SolarFormer is to first estimate 
past GHI from the satellite observations and then predict the future GHI 
based on the retrieved GHI images (Fig. 2). The estimation part builds 
the relationship between the TOA reflectance and surface radiation 
while the prediction part learns the spatial and temporal correlation of 
the atmospheric conditions from a time series of retrieved GHI images.

The near real-time GHI estimation is achieved by employing 

developed and publicly accessible bi-directional gated recurrent unit 
(BiGRU) models (Fig. 2a) [26]. The model leverages temporal infor-
mation within a single day to eliminate the need for additional products, 
such as surface albedo, thus enabling timely estimation of solar radiation 
[27]. It has been proved as one of the most accurate models to estimate 
GHI [26]. The estimation component includes a BiGRU layer with 32 
units, two dense layers with 25 and 5 nodes, respectively, and an output 
layer. Li et al. [27] provided a comprehensive description and config-
uration of the BiGRU model.

The forecasting component utilizes the divided space-time trans-
former refined from EarthFormer to learn the cloud movements along 
both spatial and temporal dimensions (Fig. 2b). The core of the trans-
former is built on the attention mechanism, which allows the model to 
selectively focus on relevant features of the time series without requiring 
sequential processing of previous features. This enhances efficiency and 
overcomes the limitations of long-range dependencies inherent in 
traditional models like ConvLSTM [50]. An attention function computes 
a weighted sum of the values (V), with weights determined by a 
compatibility function of the query (Q) with the corresponding key (K). 
For multi-head attention, projections wQ, wK,and wV are applied to Q,K,
and V for each head. Thus, multi-head attention can be summarized as 
follows: 

Table 1 
Summary of input variables and corresponding datasets.

Variables Dataset Dimension Spatial resolution Temporal resolution References

TOA reflectance GOES16 L1G 15 (bands) 1 km 10 min or 15 min [52]
Geometry angles GOES16 L1G 3 (angles) 1 km 10 min or 15 min [52]
Elevation GTOPO30 1 30 arc sec Static [11]

Fig. 2. The structure of the SolarFormer: (a) bi-directional gated recurrent unit (BiGRU) estimation part and (b) space–time transformer forecasting part. CNN 
represents the convolutional neural network layer.
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Attention(Q,K,V) = softmax
(

wQQwKK
̅̅̅̅
C

√

)

wVV (3) 

A detailed description of the attention can be found in the study 
conducted by Vaswani et al. [50].

The transformer is built through a hierarchical encoder–decoder 
attention structure (Fig. 2b). The encoder is responsible for processing 
the input sequence and creating a representation, while the decoder uses 
this representation to generate the output sequence. In the encoder, the 
input tensor first passes through CNN downsample blocks with a 2D 
convolutional layer (Conv 3 × 3) featuring a 3 × 3 kernel size. The 
downsample scale is set to 2. Subsequently, the resized tensors are 
encoded by position embedding before being fed into the cuboid 
attention block, which is the main mechanism of this space-time trans-
former. Each cuboid attention block contains several attention layers, 
the number of which depends on the chosen cuboid pattern for 
decomposing the input tensor. The cuboid decomposition is crucial to 
the transformer applied in earth science spatiotemporal studies, as it 
significantly reduces model complexity while still capturing various 
types of correlations [15]. In this study, we adopted the divided space-
–time pattern, which splits cuboids based on spatial and temporal axes 
separately, resulting in two attention layers per block. For each attention 
layer, the decomposed sequence is flattened, and multi-head self- 
attention is applied in parallel. The number of heads is set to 4. In the 
encoder, self-attention is applied where Q, K, and V are identical to the 
input tensor. The attention output maintains the same shape as each 
input tensor. Following each attention module, a feedforward network 
comprising two linear layers and a Gaussian error linear unit activation 
layer [21] is interspersed. The output from each cuboid attention block 
is combined with a residual connection. After four attention blocks, 
downscaling layers are introduced to reduce the tensor shape, thereby 
enhancing the encoder's efficiency. The PatchMerge function is utilized 
to achieve this downscaling [15].

The decoder mirrors the encoder process. It replaces self-attention 
with cross-attention, where Q is the input tensor, K and V are derived 
from the memory of the encoder's corresponding hierarchy. Upscaling 
layers are incorporated into the decoder, employing nearest neighbor 
interpolation. This sequence of attention blocks and scaling operations is 
repeated twice. The final layer's output is the CSR. We multiplied it by 
Emax to produce the ultimate GHI values for validation in Section 4.2. 
Detailed model configurations are presented in Table 2.

20 % of the training data is used as validation data. The mean square 
error of the predicted CSR for 12 time steps at each pixel of the vali-
dation data is calculated as the validation loss. The model uses the 
AdamW optimizer, which incorporates weight decay, to minimize the 
loss. Training stops when the validation loss does not decrease within 10 
epochs. The model is trained with an initial learning rate of 0.001, using 
a cosine annealing schedule, gradient clipping at 1.0, and a warmup 
phase over the first 20 % of the 100 epochs.

3.3. Metrics

The models were evaluated using several metrics, including the co-
efficient of determination (R2), mean bias difference (Bias), relative bias 
(rBias), root-mean-square error (RMSE), relative root-mean-square error 
(rRMSE), and forecast skill (FS). rBias, rRMSE, and FS are relative results 
mainly used for comparison over different areas, seasons, and among 
different studies. RMSE and rRMSE served as the primary metrics for 
comparing the models. The formulas used to compute these evaluation 
metrics are as follows: 

R2 =
σRpRg

σRpσRg
(4) 

Bias =
1
N
∑N

i=1

(
Ri

p − Ri
g

)
(5) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1

(
Ri

p − Ri
g

)2
√

(6) 

rBias = Bias
/
Rg (7) 

rRMSE = RMSE
/
Rg (8) 

where σRp denotes the standard deviation of the predicted values for the 
test samples, and σRg represents the standard deviation of the ground- 
truth measurements for the same samples. Furthermore, σRpRg repre-
sents the covariance of the predicted values and ground-truth mea-
surements for the testing samples. For a given observation, Ri

p and Ri
g 

denote the predicted value and the corresponding ground-truth mea-
surement, respectively. The mean value of the ground-truth measure-
ments for the test samples is denoted by Rg, and N is the total number of 
testing samples.

Additionally, we constructed the smart persistence forecasting model 
(PFM) as the baseline model and calculated the forecast skill (FS) rela-
tive to this baseline. The PFM presupposes that the cloud conditions at 
the last input time, xT , remain static throughout the forecast lead time, 
and that the predicted GHI (RPFM) is influenced solely by Emax. Yang [58] 
used a combination of PFM and climatology observations to determine 

Table 2 
Detailed configuration of the space–time transformer part of the SolarFormer. 
Conv 3 × 3 is the convolutional layer with a 3 × 3 kernel. GroupNorm16 is the 
Group Normalization layer [55] with 16 groups. The LeakyReLU represents the 
Leaky Rectified Linear Unit activation function [34]. The LayerNorm represents 
a normalization layer. The FFN represents a feedforward network.

Encoder Block Encoder 
Layer

Decoder Block Decoder Layer

2D CNN +
Downsampler

Conv 3 × 3
GroupNorm 
16
LeakyReLU
PatchMerge
LayerNorm
Linear

Encoder Position 
Embedding

PosEmbed Decoder Position 
Embedding

PosEmbed

Cuboid Attention 
Block x 4

LayerNorm Cuboid Cross 
Attention Block x 
4

LayerNorm
Cuboid 
(8,1,1)

Cuboid (8,1,1)

FNN FNN
LayerNorm LayerNorm
Cuboid 
(1,30,30)

Cuboid (1,15,15)

FNN FNN
CuboidCross (8,1,1)
FNN
LayerNorm

Downsampler PatchMerge Upsampler NearestNeighborInterp
LayerNorm Conv 3 × 3
Linear

Cuboid Attention 
Block x 4

LayerNorm Cuboid Cross 
Attention Block x 
4

LayerNorm
Cuboid 
(8,1,1)

Cuboid (8,1,1)

FNN FNN
LayerNorm LayerNorm
Cuboid 
(1,15,15)

Cuboid (1,30,30)

FNN FNN
CuboidCross (8,1,1)
FNN
LayerNorm

2D CNN +
Upsampler

NearestNeighborInterp

Conv 3 × 3
GroupNorm 16
LeakyReLU
Linear
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the upper boundary of RMSE for GHI forecasting. Following this study, 
given the limited impact of climatology data within a 3-h lead time, PFM 
serves as the primary reference to determine the acceptable values for 
RMSE. Also, given its widespread use as a baseline in other existing 
studies, we use PFM as the baseline for this study and in calculating the 
FS [38,43,44]. The FS represents the predictability of the proposed 
model in comparison to the PFM. A positive FS indicates that the 
SolarFormer outperforms the baseline model, and vice versa. 

RPFM
T+i = xT*Emax,T+i (9) 

FS = 1 −
RMSE

RMSEPFM
(10) 

3.4. Scalability

In this study, we train and test the results over seven study areas as a 
demonstration. In practical use, SolarFormer can be applied to all areas 
covered by GOES-16 and Himawari-8, which encompass several conti-
nents including North America, South America, Asia, and Oceania. The 
only dynamic input for SolarFormer is the 15 bands shared by both 
GOES-16 and Himawari-8. For Himawari-8, interpolating the 10-min 
interval satellite observations to 15-min intervals is the only addi-
tional procedure required, with the rest of the data preprocessing 
methods being the same as those introduced in this study.

Moreover, since both the input and output are satellite data, the 
model is not limited by the data scarcity issues that many deep learning 
models face, even when applied on a large scale. Using just two years of 
data for training has already shown good results without overfitting. 
Practically, for each area, more than four years of data can be used for 
training, and as more data becomes available, the dataset size continues 
to increase. Hence, this model can be easily scaled to larger areas.

4. Results and discussion

In this section, we conducted a comprehensive validation and anal-
ysis of the proposed model. We first validate the CRS at each pixel of the 
image against the values generated by Bi-GRU in section 4.1. By 
assuming Bi-GRU retrieved CRS as the ground truth, we can assess the 
forecasting capability of the transformer component. Higher FS and R^2 
is present than existing studies [56,63] and deep learning models used 
for image-scale forecasting, including widely used ConvLSTM and other 
transformer architectures [15,22,31,38]. To reveal its real-world accu-
racy and be fairly compared with the existing studies, we further 

validate the forecasted GHI with the ground measurement at seven 
SURFRAD stations in section 4.2. The retrieved RMSE or rRMSE is lower 
than reported by the NWP models over the same sites but in different 
years [62], and comparable or lower than existing studies using site- 
based inputs but over different areas [8,43,44]. Additionally, we 
analyze the computational and memory efficiency of SolarFormer and 
ConvLSTM in section 4.3. The interference time of both models over 
CONUS is significantly faster than High-Resolution Rapid Refresh 
(HRRR) model. Among them, SolarFormer presents lower FLOPs than 
ConvLSTM. As the forecasting lead time increases, the superiority of 
SolarFormer in terms of FLOPs and parameter size becomes more 
prominent. The limitations and future directions of this study are also 
discussed. This section aims to provide a valid reference for real-world 
applications. The model's ability to operate fast, over large spatial 
areas, and with high accuracy makes it promising to combine with 
energy-dispatching models for future energy distribution and site se-
lection decisions.

4.1. Image scale validation

Fig. 3 shows a comparison between the SolarFormer's predictions 
and the input images for the GWN site on January 13, 2018. The input 
timeframe spans from 9:00 AM to 10:45 AM, while the output timeframe 
extends from 11:00 AM to 1:45 PM. Overall, the SolarFormer's predicted 
images display a solar radiation pattern that is similar to the target over 
the 3-h forecast, capturing the evolution of solar radiation due to cloud 
dispersion. For example, the disappearance of low GHI on the right side 
of the image is evident. However, some detailed patterns are inaccu-
rately predicted, particularly for longer forecast durations; the longer 
the forecast lead time, the more indistinct the images become.

We further assessed the results by validating the normalized radia-
tion (CSR values) pixel by pixel within the images. Validation was 
conducted from a 15-min to a 3-h lead time. We also produced images 
using a baseline model and compared them in this study (Fig. 4). The 
SolarFormer outperformed the baseline model at all steps, particularly 
at longer lead times. The R2 of the SolarFormer ranged from 0.992 to 
0.744 from the 15 min to 3 h. This statistic for the SolarFormer's CSR 
validation is significantly better than that predicted by PredRNN++

[56]. Notably, our results were validated against the BiGRU-generated 
results, which may diverge from the ground truth, and were validated 
at 15-min intervals, whose statistics could be better when aggregated to 
1 h [28]. The RMSE (rRMSE) of the SolarFormer ranged from 0.02 to 
0.11 (3.2 to 18.3 %), while for the baseline model it ranged from 0.03 to 

Fig. 3. One testing sample of the input, target, and SolarFormer predicted values over the GWN site on January 13, 2018. The inputs are BiGRU generated GHI 
images ranges from 9:00 AM to 10:45 AM and the outputs are BiGRU generated GHI images ranges from 11:00 AM to 1:45 PM.
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0.15 (5.1 to 26.6 %). The RMSE (rRMSE) of both methods increased as 
the forecasting lead time increased, but the SolarFormer exhibited a 
significantly slower rate of increase. The SolarFormer maintained an 
rRMSE lower than 20 % when forecasting 3 h ahead, while the baseline 
model's rRMSE was 10 % higher. The FS of the SolarFormer ranged from 
31 to 40 %, depending on the lead time. These results indicate the strong 

predictability of the transformer and suggest that if we can achieve ac-
curate real-time estimation of solar radiation, we can attain these rRMSE 
and FS levels in solar power predictions.

Fig. 5 compares the validation results at image scale with ConvLSTM 
[38] using the same input and training data. Both the transformer and 
ConvLSTM show lower rRMSE for all lead times. Among them, the 

Fig. 4. The validation results of clear sky ratio (CSR) at each pixel within one image for both the SolarFormer and baseline models. R2: coefficient of determination; 
Bias: mean bias difference RMSE: root-mean-square error; rRMSE: relative root-mean-square; FS: forecast skill.

Fig. 5. The comparison of the validation results of clear sky ratio (CSR) at each pixel between Transformer, ConvLSTM, and Baseline models.
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transformer presents lower rRMSE after the first 15 min. In terms of 
rBIAS, the transformer shows lower absolute values overall compared 
with the baseline and ConvLSTM. However, SolarFormer exhibits an 
accumulated bias as the forecasting lead time increases, whereas the 
other models exhibit the most bias in the middle of the forecast period 
and show some relief as the lead time extends further.

4.2. In situ validation

The study also validated the SolarFormer's predictions with ground 
measurements from seven SURFRAD sites to assess the model's overall 
efficacy and compared it with the baseline model (Fig. 6). We first 
validated the BiGRU-retrieved GHI estimation at the last input time-
frame, shown as 0 min. The estimated RMSE (rRMSE) is 92.1 W/m2 

(15.9 %), which aligns with the accuracy reported by Li et al. [26], 
representing the systematic uncertainties introduced by the estimation 
methods. Unlike the image-scale validation, the baseline model driven 
with in situ measurements exhibits high accuracy in the first 30 min, 
surpassing the estimation accuracy within the initial 15 min. This can be 
attributed to the relatively stable atmospheric conditions in such a short 

period combined with the spatiotemporal representativeness issues of 
point-based ground measurements compared to satellite pixels as well as 
the systematic uncertainties introduced by the estimation part. After 30 
min, the SolarFormer demonstrates superior performance. The overall 
RMSE (rRMSE) of the SolarFormer for the 3 h prediction is within 150 
W/m2 (30 %), compared to the baseline model, which achieved 198 W/ 
m2 (38 %). Regarding FS, the most significant increase occurs within the 
first hour, after which it largely stabilizes at approximately 25 % 
regardless of lead time, further demonstrating the transformer's advan-
tages in handling long-time series data. However, SolarFormer exhibits 
increasing bias as the forecasting lead time extends, explained by the 
inevitable error accumulation in long time-series projections inherent to 
data-driven methods.

We then assessed the results and depicted the rRMSE and FS for each 
SURFRAD station, along with their mean values, spanning time up to 3 h 
at 15-min intervals (Fig. 7). Among all the sites, DRA records the lowest 
rRMSE but also the lowest FS (Fig. 7). This is attributable to the DRA 
sites being located in Nevada's arid desert, where atmospheric condi-
tions are comparatively stable and clear. Consequently, both the Solar-
former and the baseline models can achieve high prediction accuracy, 

Fig. 6. The validation results of GHI over seven surface radiation budget observing network (SURFRAD) sites for both the SolarFormer and baseline models. 0 min 
represents the last input time frame, which we validate over bi-directional gated recurrent unit (BiGRU) generated GHI values. R2: coefficient of determination; Bias: 
mean bias difference RMSE: root-mean-square error; rRMSE: relative root-mean-square; FS: forecast skill.
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but the advantages of the Solarformer in dealing with dynamic cloud 
movement are also diminished in these regions. For the other sites, 
although the prediction rRMSE may vary slightly, the FS is similar, 
demonstrating the stability of the Solarformer across different climate 
types.

To facilitate comparison with existing studies, we aggregated the 
SolarFormer predictions to hourly granularity across all sites and 
compared them with the baseline model (Fig. 8). For the baseline model, 
the RMSE (rRMSE) values for the first, second, and third-hour forecasts 
are 124.5 W/m2 (19.9 %), 159.1 W/m2 (26.5 %), and 170.5 W/m2 (31.9 
%), respectively. In contrast, the SolarFormer model exhibits improved 
RMSE (rRMSE) values of 93.8 W/m2 (15.0 %), 118.9 W/m2 (19.8 %), 
and 129.1 W/m2 (24.2 %) for the corresponding forecast durations. The 
FS for the SolarFormer remains consistent at approximately 25 % for all 
three forecast hours. The R2 values are 0.88, 0.8, and 0.78, respectively. 
Table 3 presents the corresponding metrics for each station. The RMSE 
for most sites, for both 1-h and 3-h forecasts, is within the upper and 
lower bounds defined by Yang [58], highlighting the effectiveness of the 
proposed models. Moreover, these hourly results exceed the best out-
comes previously reported in the state-of-art hourly updated NWP 

modeling [62] and comparable with those for SolarAnywhere v2 in 
earlier research [41]. The R2 values are higher than those predicted by 
PredRNN++ over China at all lead times [56]. It is important to note 
that the results have not been compared with the identical datasets.

We conducted further analysis to understand whether the forecasting 
accuracy of the SolarFormer is influenced by its initial conditions, 
namely the estimation accuracy of the BiGRU at the last input time 
frame. We calculated the rRMSE across all lead times and the absolute 
error (AE) at the initial condition for each prediction, then aggregated 
the prediction rRMSE with the initial AE (Fig. 9). Our analysis revealed a 
significant correlation between the prediction rRMSE and the initial AE. 
A larger initial AE tends to result in a higher rRMSE and a greater 
standard deviation in the rRMSE of the SolarFormer predictions. 
Notably, the upper error bar of the prediction rRMSE corresponds to the 
highest value within each initial AE bin. This suggests that achieving 
superior accuracy at the initial condition can lead to more accurate 
forecasting outcomes.

The study further investigates the SolarFormer's performance under 
varying cloud conditions. We categorized the results based on the cloud 
mask's consistency, as depicted in Fig. 10. In cases where the cloud mask 

Fig. 7. The relative root-mean-square (rRMSE) and forecast skill (FS) values over seven surface radiation budget observing network (SURFRAD) stations and all 
combined data.
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was unchanged, the FS for the first 30 min was at or below 0. This 
suggests that the SolarFormer's performance does not surpass the base-
line model within a 30-min forecast window under stable atmospheric 
conditions. Beyond the 1-h mark, the FS becomes positive and stabilizes 

Fig. 8. The validation results on all ground truth for both the baseline and SolarFormer models at hourly granularity. R2: coefficient of determination; Bias: mean 
bias difference RMSE: root-mean-square error; rRMSE: relative root-mean-square; FS: forecast skill.

Table 3 
Summary of the SolarFormer prediction results at hourly scale over seven SURFRAD sites.

1 h 2 h 3 h

FS R2 RMSE rRMSE FS R2 RMSE rRMSE FS R2 RMSE rRMSE

(%) (W/m2) (%) (%) (W/m2) (%) (%) (W/m2) (%)

ALL 24.63 0.88 93.82 14.99 25.26 0.81 118.87 19.80 24.27 0.78 129.10 24.18
BON 32.50 0.91 77.73 12.98 32.46 0.85 101.39 17.56 28.65 0.82 114.60 22.21
DRA 22.99 0.83 86.68 10.72 25.74 0.78 101.42 13.15 23.83 0.81 107.54 15.77
FPK 22.26 0.88 88.81 14.67 22.06 0.83 108.74 18.87 19.84 0.81 116.86 22.68
GWN 26.67 0.89 87.78 14.12 24.47 0.80 119.30 19.51 23.73 0.76 130.43 23.46
PSU 16.78 0.84 110.60 21.39 20.44 0.75 137.74 26.91 23.34 0.72 141.94 30.43
SXF 30.31 0.90 86.56 15.22 32.34 0.85 106.67 19.89 33.48 0.83 113.92 24.36
TBL 23.97 0.83 112.75 17.38 22.54 0.73 147.74 24.42 19.49 0.68 167.40 32.04

Fig. 9. The change of prediction relative root-mean-square (rRMSE, %) with 
different absolute error (AE) ranges at the initial condition. The error bar 
represents the standard deviation of the rRMSE.

Fig. 10. The forecast skill (FS) of the SolarFormer at different lead time with 
cloud mask changed or unchanged.
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around 15 %. Conversely, when the cloud mask changed, the FS 
consistently exceeded 0 and improved with longer forecast lead times. 
This pattern emphasizes the SolarFormer's superior performance over 
the baseline model in dynamic cloud situations, especially as the fore-
cast period lengthens. Additionally, the FS for changing cloud masks 
consistently surpassed that for stable masks at all intervals. These 
findings not only highlight the SolarFormer's effectiveness during sig-
nificant atmospheric changes but also indicate its greater proficiency in 
managing variable conditions.

We also compare the forecasting rRMSE and FS of the SolarFormer in 
different months (Fig. 11). The SolarFormer's forecasting capabilities are 
robust throughout the year, with the rRMSE remaining consistent at 
approximately 25 %. The Forecast Skill (FS) exhibits significant vari-
ability across different months. It is observed to be higher during the 
winter months of November, December, and January, which can be 
attributed to the SolarFormer's enhanced ability to better handle com-
plex cloud movements and varying irradiance compared with the PFM. 
Conversely, the FS is lower in February, April, May, and September, 
which could suggest that the SolarFormer's improvement is less pro-
nounced during these months. The enhanced performance of the 
SolarFormer in winter could be beneficial for grid stability and energy 
planning in winter when the demand for heating increases.

4.3. Analysis and evaluation of the SolarFormer components and 
forecasting potentials

4.3.1. Ablation study of model structure
In our study, we tested various model structures to identify the 

optimal configuration for the space–time transformer when applied to 
solar forecasting. We assessed the model in terms of accuracy, measured 
by rRMSE, and model size, measured by the number of parameters 
(#Para) and floating point operations (FLOPs), across different cuboid 
attention patterns, global vectors, and downsample scales (Table 4). As 
delineated by Gao et al. [15], cuboid types determine the design of the 
elementary attention layer, which is instrumental in calculating data 
correlation for efficiently and effectively extracting space–time infor-
mation for forecasting. Our analysis compared several pioneering 
space–time attention types: divided space–time attention (divided_st), 
which separates attention along temporal and spatial dimensions [3]; 
axial attention, which segments along the tensor's temporal, height, and 
width dimensions [22]; video shifted window (video_swin), which 
specifies a non-overlapping window size of 2 × 4 × 4-sized patches as 
one attention unit [28]; and spatial local dilate attention (spatial_lg), 
which segments tensors along temporal dimensions and 4 × 4 patches 
along spatial dimensions with dilated aggregation approaches [15]. We 
also compared the effects of including or excluding the global vector, 
which links various cuboids and gathers global information [15]. In 

contrast to the Earthformer, which was originally designed for precipi-
tation forecasting and is best paired with an axial cuboid type and eight 
global vectors, our results indicated that the divided_st type without a 
global vector yielded the highest accuracy with the lowest model 
complexity for solar forecasting. Downsample scales represent pre-
liminary steps that reduce the spatial resolution of the input. Our results 
show that a lower downsample scale leads to higher accuracy, but 
increasing the number of downsample layers tends to decrease accuracy 
while significantly reducing FLOPs. Future studies should thoughtfully 
consider these trade-offs when determining the choice of convolutional 
layers.

4.3.2. Long-term forecasting potential of the SolarFormer
We here evaluate the SolarFormer's capability to forecast over 

extended periods and identifies factors influencing its accuracy. Fig. 12
depicts how varying combinations of input and output frames, along 
with spatial dimensions, affect performance. Longer output frames are 
correlated with decreased prediction accuracy but exhibit consistence 
accuracy across all forecasting lead times. The model appears to trade off 
short-term forecasting accuracy to maintain overall precision, particu-
larly for longer lead times. Additionally, a larger spatial size can enhance 
accuracy for forecasts with longer lead times. However, for models 
forecasting only three hours ahead, a larger input spatial size has the 
opposite effect. Furthermore, longer input time frames lead to higher 
accuracy with smaller spatial sizes and at longer forecasting lead times. 
The results indicate that the SolarFormer consistently maintains its 
forecasting capability over longer durations without a significant accu-
racy decline. For short-term forecasts of up to 3 h, the configuration used 
in this study is optimal. For longer forecasting horizons, increasing both 
the input frames and spatial size can improve reliability.

The SolarFormer not only offers improved prediction accuracy but 

Fig. 11. The forecast skill (FS) and rRMSE of the SolarFormer in different months.

Table 4 
Summary of accuracy and complexity of different model structures. The chosen 
model configuration is underlined.

Model Structure rRMSE (%) FLOPs #Para

Cuboid Attention Patterns divided st 12.7 22.95 G 4.81 M
spatial lg 13.5 30.15 G 6.59 M
video swin 13.4 23.14 G 4.81 M
axial 13.4 29.55 G 6.59 M

Global Vector 0 12.7 22.95 G 4.81 M
8 12.8 22.96 G 5.48 M

Downsample Scales 2 12.7 22.95 G 4.81 M
3 13.0 13.70 G 4.87 M
4 13.3 11.40 G 4.93 M
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also boasts reduced computational demands and memory consumption 
(Table 5). To demonstrate this, we compared the FLOPs and #Para 
across various input frames, output frames, and input image spatial di-
mensions for the SolarFormer and ConvLSTM [47]. With the spatial size 
set at 300 km, the SolarFormer consistently requires fewer FLOPs, 
although it has a larger parameter count. Despite the increased number 
of parameters, the SolarFormer attains a lower rRMSE and a higher FS in 
nearly all tested scenarios. When the input spatial dimension is 
expanded to 600 km, both the FLOPs and parameter count for the 
SolarFormer increase, yet they remain within the processing capabilities 
of a single 16GB NVIDIA V100 GPU. In contrast, the FLOPs and pa-
rameters for ConvLSTM increase exponentially, exceeding the memory 
capacity of a single GPU. As Fig. 11 emphasizes, future forecasting ef-
forts, particularly for longer lead times, will require the expansion of 
both input timeframes and image dimensions. In this context, the 
SolarFormer stands out as a promising option, demonstrating consid-
erable potential for long-term forecasting.

4.4. Limitations and future directions

Though geostationary satellite data is a unique data source for solar 
forecasting due to its spatial information of clouds, some limitations 
arise from using solely satellite data. First, visible bands become invalid 
during nighttime, rendering SolarFormer unable to predict early 
morning GHI as the input data is unavailable. This also poses challenges 

when extending the method to predict day-ahead GHI. Moreover, sat-
ellite observations suffer from pixel-point mismatch due to their coarse 
resolution, leading to unavoidable systematic uncertainties [23,29]. 
Lastly, the latency of nowcasting in real-world applications cannot be 
less than the release time of the satellite observations.

The proposed algorithm shows promise but could benefit from 
further enhancements. As shown in Fig. 9, the initial conditions, namely 
the estimation accuracy of the BiGRU at the last input time frame, will 
significantly influence the overall forecasting accuracy. If we can 
retrieve highly accurate GHI at image scale at the initial conditions, the 
forecasting part of the SolarFormer can achieve outstanding perfor-
mance as shown in sections 4.1. This suggests that improving the near- 
real-time estimation part can be one way to enhance forecasting accu-
racies further.

Another notable issue is the accumulation of bias as the forecasting 
lead time extends compared with the baseline model shown in Fig. 5. 
The biased results will lead to biased decision in energy management. 
This error accumulation issue is common in time-series projections 
inherited in data-driven methods [7]. Future studies can adopt multi- 
step forecasting methods such as direct strategies and multiple-input 
multiple-output methods to mitigate these errors [49,53].

Furthermore, future models should enable probabilistic forecasting 
rather than determinate results to provide more practical meaningful 
results. This has been achieved by precipitation nowcasting studies [12] 
and a recent study in day-ahead solar radiation forecasting [4]. Adding 

Fig. 12. Ablation study of the SolarFormer for input/output time frames and spatial sizes.

Table 5 
Comparison of the accuracy and complexity of the SolarFormer and ConvLSTM for different input/output frames and spatial dimensions.

SolarFormer ConvLSTM

Input Output Spatial FLOPs #Para rRMSE FS FLOPs #Para rRMSE FS

frames frames size (G) (M) (%) (%) (G) (M) (%) (%)

8 12 300 23 4.8 12.7 34.2 106 2.6 13.0 32.8
8 16 300 28 4.8 15.6 30.1 131 2.6 15.4 31.0
4 12 300 19 4.8 12.9 34.2 90 2.6 13.3 32.4
4 16 300 24 4.8 15.1 31.8 116 2.6 15.4 30.6
8 12 600 114 6.6 12.7 34.2 1697 10.6 – –
8 16 600 142 6.6 15.1 32.4 2101 10.6 – –
4 12 600 96 6.6 13.0 33.9 1455 10.6 – –
4 16 600 121 6.6 15.0 32.6 1860 10.6 – –
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components like multi-quantiles in machine learning models can pro-
vide prediction intervals, that can assist more in decision making.

Additionally, as discussed in section 4.3.2, the SolarFormer model 
holds significant potential in long-term forecasting. However, several 
challenges remain. Firstly, regarding the input data, incorporating large 
spatial images and longer input time frames is necessary (Fig. 12). Sat-
ellite visible bands will be invalid during nighttime, so appropriately 
handling these invalid values and effectively using continuous bands 
like infrared bands for forecasting will be important. Furthermore, the 
increasing input data size will also increase the data storage burden. 
Moving the entire computation process to online platforms like Google 
Earth Engine would further enhance the scalability of this study.

5. Conclusions

Accurate, near-real-time nowcasting of GHI with high temporal up-
dates at the regional scale is crucial for cost-effective and sustainable 
management of regional energy systems. However, existing studies 
either rely on ground-measured meteorological data, which are lack of 
spatial cloud information and limited to areas with ground measure-
ments, or they rely on specific or additional inputs with computationally 
heavy models that cannot be easily scaled both spatially and temporally. 
In this study, we developed the SolarFormer model to address these 
gaps.

The model combines a BiGRU with a space–time transformer. It takes 
geostationary satellite observations from the past two hours as dynamic 
inputs only, enabling near-real-time forecasting up to 3 h at 15-min 
intervals. SolarFormer eliminates the requirement for ground measure-
ment data as inputs and hence addresses data scarcity issues that hinder 
many machine-learning models in large-scale deployments. Conse-
quently, the model can be applied directly in areas covered by both AHI 
and ABI. These features make the SolarFormer particularly advanta-
geous for the dispatch modeling of both macro- and micro-energy sys-
tems. Due to its computational efficiency, the model can be operated on 
a single 16GB NVIDIA V100 GPU.

The SolarFormer model has been rigorously validated with satellite- 
derived CSR and ground-measured GHI with metrics including R2, Bias 
(rBias), RMSE (rRMSE), and FS using PFM as the baseline model. At the 
image scale, the forecasted GHI is compared with BiGRU-generated CSR 
at each pixel for each timeframe at 15-min intervals. The rRMSE ranges 
from 3.2 % to 18.3 %, and the FS ranges from 31.1 to 44.5 (%). When 
validated against ground-measured GHI over seven SURFRAD stations at 
15-min intervals, the rRMSE ranges from 19.2 % to 28.2 %. Hourly 
validation of RMSE (rRMSE) at these stations yields results of 93.8 W/m2 

(15.0 %), 118.9 W/m2 (19.8 %), and 129.1 W/m2 (24.2 %) for 1-h, 2-h, 
and 3-h lead times, respectively. Forecast skills were recorded at 24.6, 
25.3, and 24.3 (%) for the corresponding intervals. The validation ac-
curacy surpasses not only the smart persistent model, but also those 
reported from existing hourly updated NWP methods such as the Na-
tional Oceanic and Atmospheric Administration's Rapid Refresh (RAP), 
HRRR, and post-processed HRRR. Moreover, the model shows lower 
rRMSE and relative rBias than ConvLSTM with the same input data.

Our analysis underscores the critical role of BiGRU's estimation ac-
curacy in enhancing forecasting precision as shown in Fig. 9. Higher 
accuracy in initial conditions invariably leads to improved forecasting 
outcomes, a dimension that merits further investigation. Furthermore, 
the SolarFormer's performance is outstanding under highly variable 
cloudy conditions, especially when the lead time extends, with FS 
increasing from 7 % to 25 %, as shown in Fig. 10. Under stable atmo-
spheric conditions beyond the initial 30 min, SolarFormer also presents 
high and stable FS ranging from 15 to 20 %. Moreover, SolarFormer 
achieves stable forecasting accuracy throughout the year and enhanced 
performance in winter compared with the baseline as shown in Fig. 11. 
This would be beneficial for grid stability and energy planning in winter 
when the demand for heating increases.

The study reveals the potential of SolarFormer to forecast over 

extended periods. The findings indicate that the SolarFormer reliably 
sustains its forecasting accuracy over longer durations without signifi-
cant deterioration (Fig. 12). For longer time series forecasting, incor-
porating broader spatial dimensions and longer input time frames can 
enhance predictive precision. Comparative analysis also demonstrates 
SolarFormer's superior performance relative to ConvLSTM regarding 
accuracy, computational requirements, and memory efficiency at 
different forecasting lead time (Table 5). The SolarFormer's efficient 
architecture enhances its prospects, positioning it as a viable option for 
longer forecasting horizons in the future, which will benefit applications 
in transmission and distribution scheduling, as well as power market 
bidding and clearing [2].
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