
1.  Introduction
Cooking emission is a major source of fine particulate matter (PM) and organic aerosols (OA) in urban at-
mosphere (Abdullahi et al., 2013; Buonanno et al., 2009; Reyes-Villegas et al., 2018), generating great effects 
on both human health and air quality. It has been reported that emissions from cooking activities have re-
sulted in the death of millions of people annually, according to the report from World Health Organization 
(https://www.who.int/airpollution/household/en/) (Y. He et al., 2019).

The composition of cooking aerosol, which depends on the ingredients of food materials and cooking style, 
varies largely in the atmosphere. Several typical tracers, such as alkanes, dicarboxylic acids, fatty acids, ster-
ols, etc., have been used to characterize cooking source related aerosols (Abdullahi et al., 2013). In China, it 
has been found that the main component from cooking emission is usually C6-C24 fatty acid with midlong 
carbon chains (L.-Y. He et al., 2004), therefore, cooking aerosols may have a large surface area (Abdullahi 
et al., 2013). Organic carbon (OC) emissions (1.9 × 104 mg year−1) from residential (indicated by cooking 
activities) are much higher than those emitted from transportation (1.5 × 103 mg year−1) in urban Beijing, 
according to inventory of Multiresolution Emission Inventory for China (MEIC) (F. Liu et al., 2015). A very 
high emission rate of toxic equivalent from cooking sources was also revealed by C.-T. Li et al. (2003).

High mass concentrations of cooking source related organic aerosols (COA) have been measured in popu-
lated urban regions. For example, the higher mass concentration of COA (6.6 μg m−3) than the hydrocarbon 
OA (HOA, 5.8 μg m−3) has been obtained in Beijing (Y. L. Sun et al., 2013). The COA has also been found 
to account for higher fraction of OA than traffic-related HOA in Lanzhou (J. Xu et al., 2014). Moreover, it is 
found that the photochemical products from oxidation of volatile organic compounds (VOCs) can condense 
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on the COA to form secondary organic aerosol (SOA) in urban areas (T. Liu et al., 2018; Roe et al., 2005). 
Therefore, the characterization of COA is of great significance to elucidate its effect on regional air quality 
and climate. Many studies have explored different methods to quantify COA, including positive matrix 
factorization (PMF) analysis, receptor models. COA and other OA (e.g., traffic OA, primarily composed by 
HOA) can be well separated by PMF method, owing to their distinct mass spectrum characteristics. In ad-
dition, the diurnal variations of COA are usually characterized by two distinct peaks during meal time (Hu 
et al., 2016; X.-F. Huang et al., 2010; P. Xu et al., 2017).

The hygroscopicity of fine particles, which can impact air quality and climate by affecting their CCN ac-
tivity, the radiative forcing, and visibility (Hudson & Clarke, 1992; Qi et al., 2018), highly depends on the 
chemical composition, atmospheric transformation, and types and emissions of gas precursors under di-
verse environments (Fan et al., 2020; Zhang, Li, et al., 2014; Zhang, Wang, et al., 2017). Usually, the COA is 
nonhydrophilic with hygroscopic parameter (κ) value of 0, while the experimental study revealed that the 
hygroscopicity of the COA enhanced greatly after photochemical aging, and the mass fraction of soluble 
COA was doubled, from 24% to 55% (Y. Li et al., 2018). Another earlier experimental study showed that the 
degree of oxidation of COA enhanced markedly after photochemical aging (Kaltsonoudis et al., 2017). Also, 
Y. Li et al. (2018) reported that aged COA is more hygroscopic and CCN active than the fresh one. Due to 
the strong emissions in populated urban area, its aging and the variations of the hygroscopicity and CCN 
activity of those freshly emitted COA would be expected to be more complex.

In this study, based on two field measurements in the winter of 2016 and summer of 2017 in urban Beijing, 
we characterize the levels and variations of COA in fine aerosol particles and its effect on aerosols hygro-
scopicity and CCN activity. The study is structured as follows. The methods are presented in Section 2. The 
time series of COA are shown in Section 3.1. The diurnal variations of COA are shown in Section 3.2. The 
impact of COA on hygroscopicity of aerosol are investigated in Section 3.3. The sensitivity of aerosol CCN 
activity to variations in κ and κorg are examined in Section 3.4. Implications and conclusions are given in 
Section 4.

2.  Materials and Methods
We conducted the field measurements at the campus of Institute of Atmospheric Physics (IAP). The site 
is located in the central area of urban Beijing, and there are some restaurants around the site. The sam-
pling site is influenced by multiple factors, including cooking emissions from nearby restaurants, vehicle 
emissions from road traffic. Therefore, cooking emissions can be important at the site, and the cooking 
activities impacts the diurnal patterns of COA. The observation at the site can represent typical urban back-
ground (regional characteristics), and also can well capture local impacts (Sun, Du, et al., 2016). As shown 
in Figure 1, the mass concentration of COA is with both large spikes and baselines. Two campaigns were 
conducted in winter of 2016 (from 18 November to 15 December) and summer of 2017 (from 25 May to 
18 June), respectively. One of the key instruments deployed in two campaigns is aerodyne high-resolution 
time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which is used to measure the chemical compo-
sition of nonrefractory size-resolved fine PM with a sampling height of approximately 4 m from ground. 
The measured NR-PM1 species include organics (Org), sulfate (SO4), nitrate (NO3), ammonium (NH4), and 
chloride (Chl). Mean particle number size distributions of PM1 species measured during the campaigns are 
shown in Figure S1. More detailed description of the field measurements and instruments can be found 
in W. Xu et al. (2015). BC was measured in two campaigns using a light absorption with an aethalometer 
(AE33, Magee Scientific Corp., Drinovec et al., 2015). AMS PMF with PMF algorithm (v4.2) method was 
applied to identify COA factor (P. Xu et al., 2017). The detailed operation of PMF has been described by W. 
Xu et al. (2015), W. Xu et al. (2019) and J. Liu et al. (2021). In addition to the COA factor, three other primary 
OA factors, HOA, fossil fuel-related OA (FFOA), and biomass burning OA (BBOA), are also separated for 
analysis.

The hygroscopicity of fine aerosol particles is measured by a Hygroscopic Tandem Differential Mobility 
Analyzer (HTDMA) system. The first DMA was used to select the size of quasimonodisperse particles to 
obtain the Ddry. Before get into the DMA, the particles were dried to a relative humidity (RH) < 20% by a 
Nafion dryer. The second DMA was used to measure the grown size of the humidified quasimonodisperse 
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particles to obtain the Dwet. The hygroscopic growth factor (Gf) is derived by the ratio of Dwet/Ddry. A Nafion 
humidifier was used to humidify the quasimonodisperse particles to the specified relative humidity (90%). 
RH was calibrated regularly with ammonium sulfate during the campaign. The first DMA and a water-based 
condensation particle counter (WCPC, model 3787, TSI Inc.) can be connected directly to measure the 10–
400 nm particle number size distribution (PNSD). In this study, the selected dry diameters were 40, 80, 110, 
150, and 200 nm, respectively, according to previous studies (Fan et al., 2020; Wang, Zhang, et al., 2017). In 
this study, we obtained bulk hygroscopicity of OA (κorg) by averaging value of κ of particles with different 
diameters. We used mean κ to calculate the overall hygroscopicity of OA based on the mixing rule with the 
size-resolved aerosol chemical compositions measured by AMS (Petters & Kreidenweis, 2007) (SI: Meth-
ods). More detailed calculation methods of κ and κorg are given in J. Liu et al. (2021). The volume of COA 
were calculated according to its mass concentration and density (1.0 g cm−3). And the volume fraction of 
COA (εCOA) can be obtained by dividing the volume of COA by the volume of total OA,


 

 COA

COA total OA

mCOA
V (1)

where mCOA is the mass concentration of COA. ρCOA is the density of COA. Vtotal −  OA is the volume of total 
OA.

And we express the CCN activity of aerosols as critical supersaturation (Sc). According to the κ-Köhler 
theory, the supersaturation ratio corresponding to the critical particle size can be interpreted as the Sc corre-
sponding to the particle size. For κ > 0.1, the particle critical supersaturation with specific particle size (Dp) 
can be calculated by the following expressions (Petters & Kreidenweis, 2007),
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Figure 1.  Time series of mass concentration of PM1, cooking organic aerosol (COA) and mass fraction of COA to PM1 and total OA in winter (left) and summer 
(right). The pie charts embedded in the figure represent the campaign mean mass fraction of COA (orange), other components (blue) to PM1, and mean mass 
fraction of other OA (gray) to total OA. OA, organic aerosol; PM, particulate matter.
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where κ is the overall hygroscopicity of aerosols. Sc is the particle critical supersaturation. Dp is the dry 
diameter of the particles, σs/a is the surface tension of the solution/air (assumed to be the surface tension 
of pure water, σs/a = 0.0728 N m−2), R is the universal gas constant, T is the absolute temperature, Mw is the 
molecular weight of water, and ρw is the density of water.

3.  Results and Discussion
3.1.  Time Series

The COA spectrum in winters of 2016 shows a high ratio of m/z 55/57 (∼2.2), and the O/C of COA is ∼0.16 
in winter of 2016 (W. Xu et al., 2019). The COA factor in summer of 2017 was obtained by the same method 
as in winter of 2016. And the COA is correlated with C6H10O+, which is a tracer for cooking emissions (W. 
Xu et al., 2019). The time series of mass concentration of PM1 and COA, mass fraction of COA to PM1, and 
mass fraction of COA to total OA during the campaign are presented in Figure 1. The mass concentrations 
of PM1 and COA both in the summer and winter were observed presenting large fluctuations, which should 
be closely associated with the variations of meteorological conditions, emission sources and rapid forma-
tion of fine particles, etc. The PM1 and COA mass concentration was observed during winter with campaign 
average values of 90.4 ± 83.3 µg m−3 and 5.5 ± 5.6 µg m−3, corresponding to mass fraction of COA to PM1 
and OA of 8% ± 9% and 17% ± 13% respectively. In summer, the mass concentration of PM1 and COA show 
much lower ambient levels, with campaign averages of 21.7 ± 13.3 µg m−3 and 1.9 ± 2.1 µg m−3, respective-
ly, but with similar mass fraction and the COA constituted a considerable fraction of PM1 mass (10% ± 9%) 
and OA (19% ± 13%). Occasionally, the mass concentration of COA can be as high as 50 µg m−3 (with mass 
fraction of more than 90% to total OA), indicating that emission from cooking activity is a primary source 
of PM1 in urban Beijing.

3.2.  Diurnal Variations

As shown in Figure 2, the PM1 mass concentration in winter and summer exhibited distinct diurnal varia-
tions (Figure 2a). In winter, the diurnal variation of PM1 mass concentration presented a shallow “U” shape, 
which is low in the daytime and high during nighttime, reflecting the influence due to changes of planetary 
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Figure 2.  Averaged diurnal patterns in mass concentration of PM1 (a) and cooking organic aerosol (COA) (b), mass fraction of COA to PM1 (c), mass fraction of 
COA to total OA (d), bulk κ (e) and κorg (f) in winter (black lines) and summer (red lines). The shade regions denote the standard deviation (±1σ). OA, organic 
aerosol; PM, particulate matter.
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boundary layer (PBL) in winter. On the contrary, the mass concentration of PM1 shows insignificant diurnal 
variation in summer. This is likely due to that the stronger photochemical processing yields more secondary 
aerosols during daytime in summer (Y. L. Sun et al., 2013), which offsets the dilution effect of the PBL during 
daytime. The diurnal cycles of COA in winter and summer both show two notable peaks corresponding to 
lunch (11:00–14:00 local time, LT) and dinner (18:00–21:00 LT) times. Such pattern is presented at the sites 
in other cities of China (Elser et al., 2016; X.-F. Huang et al., 2010; Wang, Huang, et al., 2017) and reflects 
the strong impacts from local cooking emissions. As addressed above, higher mass concentration of COA 
in winter than that in summer is observed, which is mainly caused by distinct characteristics in the PBL 
heights, since the cooking activity may not change much between summer and winter (Duan et al., 2020, 
Figure S2). The diurnal patterns of mass fraction of COA to PM1 and total OA are generally in accordance 
with the diurnal cycles of COA mass concentration in winter and summer (Figures 2c and 2d). The mass 
fraction of COA to OA can be as high as 27% and 32% during the lunch and dinner times (Figure 2d), respec-
tively, corresponding to mass fraction of COA to PM1 of 14% and 20% (Figure 2c). The COA has been found 
to account for higher fraction of OA than traffic-related HOA (Y. L. Sun et al., 2013, Figure S3). This again 
suggests that COA is a primary local source of primary organic aerosol (POA) that may take critical role 
in regional climate. The diurnal cycles of both the κ and κorg are similar between winter and summer (Fig-
ures 2e and 2f), but showing slightly higher in summer than that in winter. The higher κ and κorg in summer 
is probably enhanced by stronger photochemical processing in summer particularly during daytime (J. Liu 
et al., 2021). In addition, a remarkable decline in the κ and κorg at dinner time and a slight decrease at lunch 
time are observed, indicating the impact of COA on aerosols hygroscopicity (Figures 2e and 2f).

3.3.  Impact of COA on Hygroscopicity of the Fine Aerosol Particles

To elucidate the effect of COA on hygroscopicity of OA, the dependence of κorg on volume fraction of COA is 
further examined (Figure 3). Our results show that, both in the winter and summer, the κorg is decreased lin-
early from ∼0.15 (∼0.21 in winter) to ∼0.06 (0.09 in winter) with increasing of the volume fraction of COA 
from ∼10% to 40%. Linear correlations are also obtained in winter (κorg = −0.27 εCOA + 0.17, R2 = 0.51) 
and summer (κorg = −0.27 εCOA + 0.21, R2 = 0.88). The largest volume fraction of COA is observed during 
dinner time (as high as ∼40%), which corresponds to the smallest κorg of OA (denoted by the blue dots in Fig-
ure 3a), indicating a large impact of the COA on the hygroscopicity of organic aerosols. The volume fraction 
of COA at noncooking time is smaller, with mean εCOA of 16% in winter and 19% in summer, with elevated 
κorg and κ of 0.11 ± 0.04 and 0.25 ± 0.04 in winter, and 0.13 ± 0.07 and 0.25 ± 0.07 in summer, respectively. 
Note that although the volume fraction of COA increased at lunch time, the mean κorg and κ did not show 
apparent decrease by comparing with the vales at noncooking time (Figure 3b). This has been demonstrated 
that the summer strong photochemical oxidation around noon time yields more highly oxidized OA which 
is more water-soluble and enhances the overall hygroscopicity of aerosols (J. Liu et al., 2021). In addition, 
the water solubility of COA is probably enhanced after photochemical aging by exposure to ultraviolet (Y. 
Li et al., 2018). The dependence of κorg on other POA factors (i.e., FFOA, BBOA, and HOA) are further ex-
amined to explore the effect of other primary emissions on the hygroscopicity of OA (Figure 4), particularly 
given that the evening traffic rush hours may coincide with the dinner time. This has been indicated by 
the small elevations in the diurnal variations of the mass concentrations of the other POA factors (FFOA, 
BBOA, and HOA) during dinner time (Figures 4a and 4d). However, the κorg does not show obvious depend-
ence on the volume fraction of the FFOA and HOA (Figures 4b and 4e). A dependence of the κorg on εBBOA 
is shown, exhibiting an increase in the value of κorg with increase of εBBOA (Figure 4c). The results demon-
strate that the decline in hygroscopicity of aerosols is primarily due to the strengthened emission of COA 
during dinner time in urban Beijing. In other words, the emissions of COA takes critical role in altering the 
water uptake capacity of aerosols, especially at mealtime in metropolis.

3.4.  Sensitivity of Aerosol CCN Activity to Variations in κ and κorg

To further study the effect of the strong COA emissions on the CCN activity, a sensitivity of aerosol CCN 
activity (denoted as Sc) to variations in κ and κorg has been done based on κ-Köhler theory (Koehler, 1936) 
(Figure 5). As just indicated by the κ-Köhler equation, the result shows that, variations in Dp and κ (or 
κorg) played an important role in modifying aerosols CCN activity. The changes of Sc are more sensitive to 
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changes of aerosols hygroscopicity for small particles. The effect due to changes in aerosol hygroscopicity on 
Sc gradually weakened with the increase of particle size. For particles diameters of >200 nm, Sc required for 
activation to CCN increased slightly as the hygroscopicity of aerosol slacken. This is because the curvature 
effect is no longer dominant for large particles (Koehler, 1936; F. Zhang et al., 2019). For a given particle size, 
variations in Sc reflect the impacts of changes in hygroscopicity of aerosol. According to our observation, the 
PNSD of COA during the two campaigns in urban Beijing peaked between 40 and 80 nm (Figure S4). In Fig-
ure 5, it shows that, with the decrease of aerosol hygroscopicity (κorg decreased from ∼0.21 to ∼0.06) caused 
by COA, the required Sc to activate 50 nm particles (COA dominated size) increased from ∼0.55% to ∼0.75%, 
reflecting that the CCN activity was depressed significantly due to the strong COA emissions. In general, the 
decrease of water uptake capacity of aerosols caused by increase of COA emissions will reduce the aerosol 
CCN activity greatly, with the required Sc to activate the ambient fine particles increased from ∼0.3–0.5% to 
∼0.4–0.7%. Our results suggest that fresh emitted COA during mealtimes reduce the hygroscopicity of aer-
osols by varying the composition of aerosols, considerably affecting the ability of aerosols to serve as CCN. 
Our results imply the great significance of the COA to regional air quality and climate in populated urban 
areas, although it is not the primary component of OA and PM1 (Figures 1 and S3).

4.  Implications and Conclusions
Emissions from cooking activities are a major source of urban primary particulate matter. From a review 
of field observations of ambient COA, we present that COA is a considerable component of OA in urban 
areas around the world (Figure 6). Globally, it shows that the fraction of COA in OA is 10%–30% (with mean 
value of ∼20%) across the world (Figure 6a). However, owing to the traditional cooking habits in China, 
much higher mean COA mass concentrations (∼6.41 µg m−3) have been observed in most of the megacities 
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Figure 3.  The dependence of κorg on volume fraction of cooking organic aerosol (COA) (εCOA) on lunch time (11:00–14:00 local time, LT) and dinner time 
(18:00–21:00 LT). The lines represent the linear fitting of κorg and εCOA. Ellipses are the auxiliary of linear fitting (a); Statistics mean value of κ, κorg, volume 
fraction of COA (orange part of pie chart), and other OA (gray part of pie chart) during lunch, dinner, and noncooking time (b). The error bars represent ±1σ.
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in China than those in other regions, such as North America (∼1.39 µg m−3) and Europe (∼2.23 µg m−3) 
(Figure 6b). The COA levels observed by this study from our field campaigns in the winter of 2016 and sum-
mer of 2017 in urban Beijing are basically within the range of the previously reported results at other sites 
in China (Figure 6c). The mass concentrations of COA can be as high as up to 20–60 µg m−3 in some cities 
(e.g., Beijing, Lanzhou, and Xi'an) in China, highlighting the critical role of COA in determine the levels of 
ambient fine particles and its effects on regional climate.

By linking the COA emissions to aerosol particles hygroscopicity, we have 
shown that, with increase of volume fraction of COA from ∼10% during 
noncooking time (background condition) to ∼40% during dinner time, 
hygroscopic parameter of OA has been decreased from ∼0.21 to ∼0.06 (κ 
decreasing from ∼0.25 to ∼0.20), demonstrating the significant role of the 
COA sources in altering aerosols hygroscopicity in populated urban at-
mosphere. Further evaluation shows that the decrease in hygroscopicity 
of aerosols caused by COA will reduce the aerosol CCN activity markedly 
(Sc increased from ∼0.25%–0.5% to ∼0.4%–0.7%) for the ambient fine par-
ticles. The current circumstance, which presents no apparent downward 
trends of COA in urban atmosphere during last decades but much higher 
levels in ambient COA concentrations in China than those in other re-
gions around the world (as shown in Figure 6), suggests the great sig-
nificance to accurate parameterizing the effect of COA on regional air 
pollution and climate in models. In addition, due to the limitation of the 
PMF analysis, the information of the oxidation degree of the COA is not 
available in this study. However, it has been shown that the primary aer-
osols experienced rapid aging and secondary conversion in urban Beijing 
(Ren et al., 2018), it is likely that the freshly emitted hydrophobic COA 
become hygroscopic OA or oxidized COA, which can be serve as CCN. 
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Figure 4.  Average diurnal cycles of mass concentrations of primary organic aerosol (POA) factors in winter of 2016 (a) and summer of 2017 (d). The shade 
regions denote the standard deviation (±1σ). The dependence of κorg on volume fraction of FFOA (b), BBOA (c), and HOA (e) on lunch time (11:00–14:00 local 
time, LT) and dinner time (18:00–21:00 LT). The error bars represent ±1σ. BBOA, biomass burning OA; FFOA, fossil fuel-related OA; HOA, hydrocarbon OA; 
OA, organic aerosol.

Figure 5.  Sensitivity of Sc to the variations in κ and κorg. The white 
box shows the zone that is impacted due to changes of κ and κorg by the 
increase or decrease of fraction in cooking organic aerosol (COA) during 
the campaigns in urban Beijing.
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Therefore, a further study warrants to be done in future by considering the atmospheric chemical and phys-
ical processes of COA in the atmosphere.
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Figure 6.  Summary of ambient observed cooking organic aerosol (COA) from literatures. (a) The mass concentration of COA and its mass fraction to OA 
around the world (Allan et al., 2010; Crippa, Canonaco, et al., 2013; Crippa, DeCarlo, et al., 2013; Crippa, El Haddad, et al., 2013; Dall'Osto and Harrison, 2012; 
Dall'Osto et al., 2013; Dall'Osto et al., 2015; Florou et al., 2017; Ge et al., 2012; Mohr et al., 2012; Y. -L. Sun et al., 2011); (b) The mean mass concentration of 
COA in North America, Europe and China; (c) Observations at sites in China. The black diamonds and orange columns are mass concentration of COA and 
its mass fraction to OA respectively. The references, Reference 1–Reference 41, are as follows: 1. Q. Liu et al., 2011; 2, 15. Hu et al., 2016; 3. Sun et al., 2013; 
4. Zhang, Sun, et al., 2014; 5. Jiang et al., 2015; 6. W. Xu et al., 2019; 7, 11. J. K. Zhang et al., 2016; 8, 33. Elser et al., 2016; 9. Zhou et al., 2018; 10, 21. Duan 
et al., 2020; 12, 22. This study; 13. J. Li et al., 2019; 14. Huang et al., 2010; 16, 18. Zhang, Wang, et al., 2015; 17. P. Xu et al., 2017; 19. H. Li et al., 2016; 20. J. 
Li et al., 2020; 23. R. -J. Huang et al., 2019; 24. J. Xu et al., 2014; 25. J. Xu et al., 2016; 26. Zhang, Zhang, et al., 2017; 27–30. Y. J. Li et al., 2015; 31. Sun, Lee, 
et al., 2016; 32. Lee et al., 2015; 34. Wang, Huang, et al., 2017; 35, 36. Qin et al., 2017; 37. Lan et al., 2018; 38. Zhang, Tang, et al., 2015; 39. Wang et al., 2016; 40. 
Y. Zhang et al., 2018; 41. Kuang et al., 2020.

https://data.mendeley.com/datasets/v9jz9k2whb/1
https://data.mendeley.com/datasets/v9jz9k2whb/1
mailto:fang.zhang@bnu.edu.cn
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