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Abstract. The frequent occurrence of severe air pollution
episodes in China has been a great concern and thus the
focus of intensive studies. Planetary boundary layer height
(PBLH) is a key factor in the vertical mixing and dilution of
near-surface pollutants. However, the relationship between
PBLH and surface pollutants, especially particulate matter
(PM) concentration across China, is not yet well understood.
We investigate this issue at ∼ 1600 surface stations using
PBLH derived from space-borne and ground-based lidar, and
discuss the influence of topography and meteorological vari-
ables on the PBLH–PM relationship. Albeit the PBLH–PM
correlations are roughly negative for most cases, their mag-
nitude, significance, and even sign vary considerably with lo-
cation, season, and meteorological conditions. Weak or even
uncorrelated PBLH–PM relationships are found over clean
regions (e.g., Pearl River Delta), whereas nonlinearly neg-
ative responses of PM to PBLH evolution are found over
polluted regions (e.g., North China Plain). Relatively strong
PBLH–PM interactions are found when the PBLH is shallow
and PM concentration is high, which typically corresponds
to wintertime cases. Correlations are much weaker over the
highlands than the plains regions, which may be associated
with lighter pollution loading at higher elevations and contri-
butions from mountain breezes. The influence of horizontal
transport on surface PM is considered as well, manifested as
a negative correlation between surface PM and wind speed
over the whole nation. Strong wind with clean upwind air
plays a dominant role in removing pollutants, and leads to
obscure PBLH–PM relationships. A ventilation rate is used

to jointly consider horizontal and vertical dispersion, which
has the largest impact on surface pollutant accumulation over
the North China Plain. As such, this study contributes to im-
proved understanding of aerosol–planetary boundary layer
(PBL) interactions and thus our ability to forecast surface air
pollution.

1 Introduction

In the past few decades, China has been suffering from se-
vere air pollution, caused by both particulate matter (PM)
and gaseous pollutants. PM pollutants are of greater concern
to the public, partly because they are much more visible than
gaseous pollution (Chan and Yao, 2008; J. Li et al., 2016;
Guo et al., 2009), and because they have discernible adverse
effects on human health. Moreover, airborne particles criti-
cally impact Earth’s climate through aerosol direct and in-
direct effects (Ackerman et al., 2004; Boucher et al., 2013;
Guo et al., 2017; Kiehl and Briegleb, 1993; Z. Li et al., 2016,
2017a).

Multiple factors contribute to the severe air pollution over
China. Strong emission due to rapid urbanization and indus-
trialization is a primary cause. In addition, meteorological
conditions and diffusion within the planetary boundary layer
(PBL) play important roles in the exchange between polluted
and clean air. Among the meteorological parameters of im-
portance, the PBL height (PBLH) can be related to the ver-
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tical mixing, affecting the dilution of pollutants emitted near
the ground through various interactions and feedback mecha-
nisms (Emeis and Schäfer, 2006; Su et al., 2017a). Therefore,
PBLH is a critical parameter affecting near-surface air qual-
ity, and it serves as a key input for chemistry transport mod-
els (Knote et al., 2015; LeMone et al., 2013). The PBLH can
significantly impact aerosol vertical structure, as the bulk of
locally generated pollutants tends to be concentrated within
this layer. Turbulent mixing within the PBL can account for
much of the variability in near-surface air quality. On the
other hand, aerosols can have important feedbacks on PBLH,
depending on the aerosol properties, especially their light ab-
sorption (e.g., black, organic, and brown carbon; Wang et al.,
2013). Multiple studies demonstrate that absorbing aerosols
tend to affect surface pollution in China through their inter-
actions with PBL meteorology (Ding et al., 2016; Miao et
al., 2016; Dong et al., 2017; Petäjä et al., 2016). In a recent
comprehensive review, Li et al. (2017b) present ample evi-
dence of such interactions and characterize their determinant
factors .

There are various methods for identifying the PBLH. The
gradient (e.g., Johnson et al., 2001; Liu and Liang, 2010)
and Richardson number methods (e.g., Vogelezang and Holt-
slag, 1996) are traditional and most commonly used, both of
which are typically based on temperature, pressure, humid-
ity, and wind speed profiles obtained by radiosondes. Using
fine-resolution radiosonde observations, Guo et al. (2016)
obtained the first comprehensive PBLH climatology over
China. Ground-based lidars, such as the micropulse lidar
(MPL), are also widely used to derive the PBLH (e.g., Hägeli
et al., 2000; He et al., 2008; Sawyer and Li, 2013; Tucker et
al., 2009; Yang et al., 2013). The lidar-based PBLH identi-
fication relies on the principle that a temperature inversion
often exists at the top of the PBL, trapping moisture and
aerosols (Seibert et al., 2000), which causes a sharp decrease
in the aerosol backscatter signal at the PBL upper bound-
ary. However, using ground-based observations to retrieve
the PBLH suffers from poor spatial coverage and very lim-
ited sampling. The Cloud-Aerosol Lidar with Orthogonal Po-
larization (CALIOP) on board the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observations (CALIPSO) satel-
lite (Winker et al., 2007), an operational spaceborne lidar,
can retrieve cloud and aerosol vertical distributions at moder-
ate vertical resolution, complementing ground-based PBLH
measurements. Several studies already demonstrate both the
effectiveness and the limitations of using CALIPSO data for
PBLH detection, showing sound but highly variable agree-
ment with those from radiosonde- and MPL-based PBLH re-
sults (Su et al., 2017b; Leventidou et al., 2013; Liu et al.,
2015; Zhang et al., 2016).

Several studies have explored the relationship between
PBLH and surface pollutants in China. Tang et al. (2016)
used ceilometer measurements to derive long-term PBLH be-
havior in Beijing, further demonstrating the strong correla-
tion between the PBLH and surface visibility under high hu-

midity conditions. Wang et al. (2017) classified atmospheric
dispersion conditions based on PBLH and wind speed, and
identified significant surface PM changes that varied with
dispersion conditions. Miao et al. (2017) investigated the re-
lationship between summertime PBLH and surface PM, and
discussed the impact of synoptic patterns on the develop-
ment and structure of the PBL. Qu et al. (2017) derived 1-
year PBLH variations from lidar in Nanjing, and identified
a strong correlation between PBLH and PM, especially on
hazy and foggy days.

However, the majority of studies considered data from
only a few stations, and as yet, the interaction between PBLH
and surface pollutants under different topographic and me-
teorological conditions is not well characterized. Assessing
the relationship between PM and the PBLH quantitatively
over the entire country is of particular interest. PBL turbu-
lence is not the only factor affecting air quality, so there can
be large regional differences in the interaction between the
PBLH and PM. As such, the contributions of various factors
to the PBLH–PM relationship remain uncertain, which thus
warrants a further investigation.

Given the above-mentioned limitations, the current study
presents a comprehensive exploration of the relationship be-
tween the PBLH and surface pollutants over China, for a
wide range of atmospheric, aerosol, and topographic condi-
tions. Since 2012, China has dramatically increased the num-
ber of instruments and implemented rigorous quality control
procedures for hourly pollutant concentration measurements
nationally, providing much better quality data than were pre-
viously available. The pollutant data derived from surface ob-
servations, along with CALIPSO measurements, offer us an
opportunity to investigate the impact of PBLH on air qual-
ity on a nationwide basis. Regional characteristics and sea-
sonal variations are considered. Moreover, multiple factors
related to the interaction between the PBLH and PM are
investigated, including surface topography, horizontal trans-
port, and pollution level. Accounting for the influences these
factors have on the relationships between PBLH and surface
pollutants will help improve our understanding and forecast-
ing capability for air pollution, as well as help refine meteo-
rological and atmospheric chemistry models.

2 Data and method

2.1 Description of observations

2.1.1 Surface data

The topography of China is presented in Fig. 1a, and pink
rectangles outline the four regions of interest (ROI) for the
current study: northeast China (NEC), the Yangtze River
Delta (YRD), the Pearl River Delta (PRD), and the North
China Plain (NCP). The environmental monitoring station
locations are indicated with red dots in Fig. 1b. They rou-
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Table 1. Description of data.

Observations Variables Location Temporal resolution Time period

Environmental stations PM2.5 ∼ 1600 sitesa Hourly Jan 2012–Jun 2017
Meteorological stations WS/WD ∼ 900 sitesb Hourly Jan 2012–Jun 2017
MPL PBLH, extinction Beijing 15 s Mar 2016–Dec 2017
AERONET AOD (550 nm), Beijing ∼Hourly Jan 2016–Dec 2017
MODIS AOD Whole China Daily Jan 2006–Dec 2017
CALIPSO PBLH Orbits in Fig. 1d Daily Jun 2006–Dec 2017
MERRA PBLH Whole China Hourly Jan 2006–Feb 2016

a 224 sites over the NCP; 105 sites over the PRD; 215 sites over the YRD; 159 sites over NEC. b 37 sites over the NCP; 92 sites over the PRD;
34 sites over the YRD; 76 sites over NEC.

tinely measure PM with diameters ≤ 2.5 µm (PM2.5), which
are released to the public in real time with relatively high
credibility (Liang et al., 2016). The locations of meteorolog-
ical stations are indicated in Fig. 1c (data source: http://data.
cma.cn/en, last access: 11 January 2018). The wind speed
and wind direction at these stations are quality-controlled
and archived by the China Meteorological Administration.
We also utilized the MPL data and Sun-photometer data in
Beijing, a megacity located within the NCP. The MPL lo-
cated in Beijing was operated continuously by Peking Uni-
versity (39.99◦ N, 116.31◦ E) from March 2016 to Decem-
ber 2017, with a temporal resolution of 15 s and a verti-
cal resolution of 15 m. The near-surface blind zone for lidar
is around 150 m. Background subtraction, saturation, after-
pulse, overlap, and range corrections are applied to raw MPL
data (He et al., 2008; Yang et al., 2013). In this study, we
use Level 1.5 aerosol optical depth (AOD) at 550 nm from
the Beijing RADI (40◦ N, 116.38◦ E) Aerosol Robotic Net-
work (AERONET) site, with hourly time resolution. As ob-
servations from multiple sources and platforms are used, we
present descriptions of these observations in Table 1.

2.1.2 CALIPSO data

CALIOP aboard the CALIPSO platform is the first space-
borne lidar optimized for aerosol and cloud profiling. As part
of the Afternoon satellite constellation, or A-Train (L’Ecuyer
and Jiang, 2010), CALIPSO is in a 705 km Sun-synchronous
polar orbit between 82◦ N and 82◦ S, with a 16-day repeat
cycle (Winker et al., 2007, 2009). In this study, we used the
CALIPSO data to retrieve the daytime PBLH along its or-
bit. As shown in Fig. 1d, blue lines represent the ground
tracks over China for the daytime overpasses of CALIPSO.
To match the CALIPSO retrievals with equator crossings at
approximately 13:30 local time, we use the surface meteo-
rological and environmental data in the early afternoon aver-
aged from 13:00 to 15:00 China standard time (CST). During
this period, the PBL is well developed with relatively strong
vertical mixing, which is a favorable condition for investigat-
ing aerosol–PBL interactions.

Figure 1. (a) Topography of China. The black rectangles outline
the five regions of interest: northeast China (NEC): 40.5–50.2◦ N,
120.1–135◦ E; North China Plain (NCP): 33.8–40.3◦ N, 114.1–
120.8◦ E; Pearl River Delta (PRD): 22.2–24◦ N, 111.9–115.4◦ E;
and Yangtze River Delta (YRD): 27.9–33.5◦ N, 116.5–122.7◦ E.
Locations of (b) environmental stations and (c) meteorological sta-
tions. (d) Blue lines indicate CALIOP daytime orbits (in ascending
node). Ground-based lidar and Sun photometer are deployed in Bei-
jing (red triangle).

2.1.3 MODIS data

The MODIS instruments on board the NASA Terra and
Aqua satellites have 2330 km swath widths, and provide
daily AOD data with near-global coverage. In this study, we
use the Collection 6 MODIS-Aqua Level-2 AOD products
at 550 nm (available at: https://www.nasa.gov/langley, last
access: 15 January 2018), which is a widely used parame-
ter to represent the columnar aerosol amount. AOD data are
archived with a nominal spatial resolution of 10 km× 10 km,
and the data are averaged within a 30 km radius around
the environmental stations to match surface PM2.5 data.
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The MODIS land AOD accuracy is reported to be within
± 0.05+ 15 % of AERONET AOD (Levy et al., 2010). Note
that aerosol loading is significantly different in different re-
gions. To account for the background pollution level, we nor-
malize the PM2.5 with MODIS AOD to qualitatively account
for background or transported aerosol that is not concentrated
in the PBL.

2.2 Retrieving PBLHs

2.2.1 PBLH derived from MPL

MPL data from Beijing were used to retrieve the PBLH for
this study. Multiple methods have been developed for re-
trieving the PBLH from MPL measurements, such as signal
threshold (Melfi et al., 1985), maximum of the signal vari-
ance (Hooper and Eloranta, 1986), minimum of the signal
profile derivative (Flamant et al., 1997), and wavelet trans-
form (Cohn and Angevine, 2000; Davis et al., 2000). To
derive the PBLH from MPL data, we implement a well-
established method developed by Yang et al. (2013) and
adopted in multiple studies (Lin et al., 2016; Su et al., 2017a,
b). This method is tested to be suitable for processing long-
term lidar data. Initially, the first derivative of a Gaussian
filter with a wavelet dilation of 60 m is applied to smooth
the vertical profile of MPL signals and to produce the gra-
dient profile. The aerosol stratification structure is indicated
by multiple valleys and peaks in the gradient profile. To ex-
clude misidentified elevated aerosol layers above the PBL,
the first significant peak in the gradient profile (if one ex-
ists) is considered the upper limit in searching for the PBL
top. Then, the height of the deepest valley in the gradient
profile is attributed to the PBLH; discontinuous or false re-
sults caused by clouds are subsequently eliminated manually.
Moreover, we further estimated the shot noise (σ ) induced
by background light and dark current for each profile, and
then added threshold values of ±3σ to the identified peaks
and valleys of this profile to reduce the impact of noise.
Figure S1 in the Supplement presents an example of the
PBLH retrievals derived from MPL backscatter over Beijing.
To validate MPL-derived PBLH, the values are compared
with summertime radiosonde PBLH results retrieved using
the Richardson number method (e.g., Vogelezang and Holt-
slag, 1996) from potential temperature profiles acquired at
the Beijing station (39.80◦ N, 116.47◦ E) at 14:00 CST. Fig-
ure S2a shows good agreement (R =∼ 0.7) between MPL-
and radiosonde-derived PBLHs over Beijing.

2.2.2 PBLH derived from CALIPSO

CALIOP aboard the CALIPSO platform measures the to-
tal attenuated backscatter coefficient (TAB), with a horizon-
tal resolution of 1/3 km and a vertical resolution of 30 m in
the low and middle troposphere, and has two channels (532
and 1064 nm). As the nighttime heavy surface inversion and

residual layers tend to complicate the identification of the
PBLH, we only utilize daytime TAB data (Level 1B) in this
study. For retrieving the PBLH from CALIPSO, we typically
use the maximum standard deviation (MSD) method, which
was first developed by Jordan et al. (2010) and then modi-
fied by Su et al. (2017b). In general, it determines the PBLH
as the lowest occurrence of a local maximum in the stan-
dard deviation of the backscatter profile, collocated with a
maximum in the backscatter itself. The PBLH retrieval range
(0.3–4 km), surface noise check, and removal of attenuat-
ing and overlying clouds are subsequently included in this
method. In addition, due to the viewing geometry of the in-
strument, we define a constraint function:

β (i)=max {f (i+ 2) ,f (i+ 1)}

−min {f (i) ,f (i− 1)} , (1)

where f (i+ 2) ,f (i+ 1) ,f (i) ,f (i− 1) are four adjacent
altitude bins in the 532 nm TAB and where the altitude de-
creases with increasing bin number i. To eliminate the lo-
cal standard deviation maximum caused by signal attenua-
tion, we add the constraint β > 0, and locate the PBLH at
the top of the aerosol layer. We also apply the wavelet co-
variance transform (WCT) method to retrieve the PBLH, and
this retrieval serves as a constraint. We eliminate cases when
the difference between the MSD and WCT retrievals exceeds
0.5 km, to increase the reliability of the MSD retrievals. The
processes and steps for retrieving PBLH from CALIPSO are
summarized in Fig. 2. We only analyze CALIPSO PBLH re-
trievals that pass all the indicated tests and constraints. An
example of PBLH retrievals derived from CALIPSO is pre-
sented in Fig. S1.

Due to the high signal-to-noise ratio and reliability of
MPL measurements, we use MPL-derived PBLH to test the
CALIPSO retrievals. The comparison between CALIPSO-
and MPL-derived PBLH in Beijing and Hong Kong (result
from Su et al., 2017b) is shown in Fig. S2b–c. Reasonable
agreement between CALIPSO- and MPL-derived PBLHs at
these two sites is shown. The correlation coefficients are
above 0.6, which is similar to results from previous studies
(e.g., Liu et al., 2015; Su et al., 2017b; Zhang et al., 2016).
Besides the differences in signal-to-noise ratio, the 0–50 km
distance between the MPL station and CALIPSO orbit also
contributes to the differences between MPL- and CALIPSO-
derived PBLH.

2.2.3 PBLH obtained from MERRA reanalysis data

We also use the PBLH data obtained from the Modern
Era-Retrospective Reanalysis for Research and Applications
(MERRA) reanalysis dataset to generate a PBLH clima-
tology with a spatial resolution of 2/3◦× 1/2◦ (longitude–
latitude). The MERRA reanalysis data use a new version
of the Goddard Earth Observing System Data Assimilation
System Version 5 (GEOS-5), which is a state-of-the-art sys-
tem coupling a global atmospheric general circulation model
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Figure 2. The schematic diagram of retrieving the PBLH from CALIPSO.

(GEOS-5 AGCM) to NCEP’s Grid-point Statistical Inter-
polation (GSI) analysis (Rienecker et al., 2011). Compared
with other reanalysis products (e.g., ECMWF), MERRA
PBLHs have relatively high temporal and spatial resolution,
and are widely used in multiple studies (e.g., Jordan et al.,
2010; McGrath-Spangler and Denning, 2012; Kennedy et al.,
2011). As the reanalysis data take account of large-scale dy-
namical forcing, we use MERRA data to generate the PBLH
climatology, which is further compared with that derived
from CALIPSO in this study. A detailed discussion can be
found in Sect. 3.1.

2.3 Statistical analysis methods

As a widely used parameter, the Pearson correlation coef-
ficient derived from linear regression analysis measures the
degree to which the data fit a linear relationship. This ap-
proach is less meaningful for characterizing nonlinear rela-
tionships. We find that the PBLH and PM2.5 are correlated
but not linearly correlated under most conditions. We found
by trial and error that an inverse function (f (x)= A/x+B)
fits our data well. Following Winship and Radbill (1994),
we derived the fitting parameters (A and B) and the coef-
ficient of determination (R2) of the PBLH–PM relationship
using this inverse fitting function. Similar to the concept in
the linear fitting, we define the slope in the inverse fit as A.
Thus, the slope of linear fit represents the linear slope be-
tween PBLH and PM2.5, whereas the slope of an inverse fit
represents the linear slope between − 1

PBLH and PM2.5. The
sign of correlation coefficient for the inverse fit is the same
as that of the slope. Obviously, the correlation coefficient and
slope of the inverse fit for a positive relationship will be pos-

itive. Moreover, the normalized sample density at each lo-
cation in a scatter plot represents the probability distribution
in two dimensions (Scott, 2015). Then setting the weighting
function of the inverse fit equal to the normalized density
produces the best-fitting results representing the majority of
cases. In general, we attempt both regular linear regression
and inverse fitting to characterize the PBLH–PM relation-
ships, and we provide the correlation coefficients and slopes
for both fitting methods. In each case, the magnitude of cor-
relation coefficient represents how well the observations are
replicated by the fitting model, and the magnitude of slope
represents the sensitivity of PM2.5 to PBLH changes.

In addition, the statistical significance of the PBLH–PM
relationships is tested by two independent statistical meth-
ods, namely the least squares regression and the Mann–
Kendall (MK) test (Mann, 1945; Kendall, 1975). Least
squares regression typically assumes a Gaussian data distri-
bution in the trend analysis, whereas the MK test is a non-
parametric test without any assumed functional form, and is
more suitable for data that do not follow a certain distribu-
tion. To improve the robustness of the analysis, a correla-
tion is considered to be significant when the confidence level
is above 99 % for both least squares regression and the MK
test. Hereafter, “significant” indicates that the correlation is
statistically significant at the 99 % confidence level.
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Figure 3. Spatial distributions of climatological mean PBLH derived from CALIPSO for (a) March–April–May (MAM), (b) June–July–
August (JJA), (c) September–October–November (SON), and (d) December–January–February (DJF) during the period 2006–2017. Spatial
distributions of climatological mean of early-afternoon PBLH obtained from MERRA for (e) MAM, (f) JJA, (g) SON, and (h) DJF during
the period 2006–2016.

3 Results

3.1 Climatological patterns of PBLH and surface
pollutants

The climatology of the PBLH, especially its seasonal vari-
ability, is very important for air-pollution-related studies.
We utilized the CALIPSO measurements from 2006 through
2017 to represent the spatial distribution of seasonal mean
PBLH with interpolation, as shown in Fig. 3a–d. A smooth-
ing window of 20 km was applied to the original PBLH
data at 1/3 km horizontal resolution. The seasonal climato-
logical patterns of MERRA-derived PBLH are presented in
Fig. 3e–h for a similar period. In general, the climatological
pattern of MERRA PBLH is similar to that of CALIPSO,
though the MERRA values are higher in spring and summer,
and the peak values are lower in autumn and winter. Both
CALIPSO and MERRA PBLHs are generally shallower in
winter, when the development of the PBL is typically sup-
pressed by the weaker solar radiation reaching the surface,
and are generally higher in summer, especially for inland re-
gions.

Note that there are still considerable differences between
the CALIPSO- and MERRA-derived PBLH climatological
patterns, which can be attributed to sampling biases, dif-
ferent definitions, and model uncertainties. First, since the
spatial coverage and time resolution are quite different be-
tween the CALIPSO and MERRA datasets, the sampling
used to calculate the climatologies are quite different. More-
over, MERRA PBLHs are derived from turbulent fluxes com-
puted by the model, whereas CALIPSO usually identifies

the top height of an aerosol-rich layer. Although turbulent
fluxes would significantly affect aerosol structures, the differ-
ent definitions still can cause differences between CALIPSO
and MERRA PBLHs. The detailed relationship between of
CALIPSO- and MERRA PBLHs is presented in Fig. S2d.
Quantitatively, CALIPSO PBLH values exhibit considerable
differences from MERRA results; the correlation coefficient
of ∼ 0.4 indicates that the observations presented here will
likely be useful for future model refinement. The reanalysis
data do take into account large-scale dynamical forcing and
have the ability produce the general PBLH climatology pat-
tern (Guo et al., 2016). However, the reanalysis data do not
consider the impact of aerosols, except with limited upper
atmospheric measurement data assimilated, so the effects of
aerosol–PBL interactions are poorly represented (Ding et al.,
2013; Simmons, 2006; Huang et al., 2018). Thus, the cur-
rent reanalysis data have limited ability to support a detailed
investigation of PBLH–PM relationships.

Correspondingly, Fig. 4 presents the spatial distributions
of seasonal mean PM2.5 as measured at the surface stations.
Both the PBLH and PM2.5 over China exhibit large spatial
and seasonal variations. The PM2.5 seasonal pattern is gener-
ally coupled to that of PBLH; the lowest values occur in sum-
mer and the highest in winter. As a high PBLH facilitates the
vertical dilution and dissipation of air pollution, the contrast-
ing patterns of PBLH and PM2.5 are consistent with expecta-
tion. The NCP is a major polluted region, with mean PM2.5
concentrations overwhelmingly above 100 µg m−3 during
winter. Both the PBLH and PM2.5 also show strong season-
ality over the NCP. The PRD is a relatively clean region, and
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Figure 4. Spatial distributions of climatological mean of early-
afternoon PM2.5 concentration (in µg m−3) for (a) MAM, (b) JJA,
(c) SON, and (d) DJF during the period 2012–2017.

PM2.5 maintains low values (< 50 µg m−3) through all sea-
sons. As a reference, the seasonal means and standard devi-
ations of PBLH and PM2.5 over four ROIs are listed in Ta-
ble S1 in the Supplement.

From the seasonal climatologies, we find a coupling pat-
tern between PBLH and PM2.5, although one cannot assume
a causal relationship from these plots alone. In subsequent
sections, we use the lidar PBLH retrievals to investigate the
PBLH–PM relationships in more detail.

3.2 Regional relationships between PM and PBLH

If the common factor driving large-scale variations in both
PM and PBLH is meteorology, a regional analysis of their
relationship could elucidate the meteorological impacts. We
investigate the CALIPSO PBLH and surface PM2.5 data
case by case. By matching the available CALIPSO retrievals
within 35 km of the surface PM2.5 observations, we show the
scatter plots for PBLH versus surface PM2.5 for the four ROIs
in Fig. 5. Despite the overall negative correlations, the cor-
relations between PBLH and PM2.5 have large spreads and
differences. Both regular linear regression and inverse fitting
are applied to characterize the PBLH–PM relationships. Sig-
nificant negative correlations between PM2.5 and PBLH are
found over the NCP, with a Pearson correlation coefficient
of −0.36. In addition, the nonlinear inverse function shows
high consistency with the average values for each bin, and
characterizes the PBLH–PM relationship with a somewhat
higher correlation coefficient (−0.49). PBLH also shows sig-
nificant negative correlation with PM2.5 over the YRD and
NEC, whereas the weak PBLH correlation with PM2.5 over
the PRD is not statistically significant. The correlation coeffi-

Figure 5. The relationship between CALIPSO-derived PBLH and
early-afternoon PM2.5 over (a) the NCP, (b) the PRD, (c) the YRD,
and (d) NEC. The black dots and whiskers represent the average
values and standard deviations for each bin. The red dashed lines
indicate the regular linear regressions, and the black lines represent
the inverse fit (f (x)= A/x+B). The detailed fitting functions are
given at the top of each panels, along with the Pearson correlation
coefficient (red) and the correlation coefficient for the inverse fit
(black). Here and in the following analysis, R with asterisks indi-
cates that the correlation is statistically significant at the 99 % con-
fidence level. The color-shaded dots indicate the normalized sample
density.

cients for the inverse fit are generally larger than the Pearson
correlation coefficients, indicating that the nonlinear fit may
be more suitable for characterizing the PBLH–PM relation-
ships. Such improvements are obvious for the NCP and the
YRD, but are not significant over the PRD and NEC.

We note that the ranges of PM2.5 for these ROIs are sig-
nificantly different; therefore, the background pollution level
is likely to be an important factor for the PBLH–PM rela-
tionship. We thus normalize the PM2.5 by MODIS AOD, a
widely used parameter to represent the total-column aerosol
amount, to qualitatively account for background or trans-
ported aerosol that is not concentrated in the PBL. The re-
lationships between PBLH and PM2.5/AOD over four ROIs
are presented in Fig. 6. Clearly, after normalizing PM2.5 by
AOD, the spread of these scatter plots and the regional differ-
ences are significantly reduced, and the correlations become
more significant for all ROIs, especially for the PRD. This is
because transported aerosol aloft can contribute to variability
in total-column AOD that is unrelated to the PBLH.

Compared to CALIPSO data, the MPL has a much higher
signal-to-noise ratio and can continuously observe at one
location. Therefore, Fig. 7 shows the relationship between
MPL-derived PBLH and PM2.5 over Beijing (a major city in
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Figure 6. Similar to Fig. 5, but for the relationship between
CALIPSO PBLH and early-afternoon PM2.5/AOD (unit: µg m−3

per AOD) over the four ROIs. Here, the AOD data are obtained
from MODIS.

the NCP), as well as the relationship between PBLH and nor-
malized PM2.5. We find the PBLH–PM relationships derived
from MPL over Beijing are similar to those derived from
CALIPSO over the NCP. Probably because of higher data
quality, the correlation coefficients for both fitting methods
are slightly higher for the relationships derived from surface
observations than those from CALIPSO. Consistent with the
results over the NCP, the PBLH shows a significantly non-
linear relationship with PM2.5 over Beijing. As the inverse
fitting method better characterizes the PBLH–PM relation-
ships than the regular linear fitting, we only use the inverse
fitting method for the PBLH–PM relationships in the main
text.

The most negative correlations between PBLH and PM2.5
appear over the NCP, likely a testament to intense PBL–
aerosol interactions, which may be caused by concentrated
local sources. Comparing with southeast China, absorbing
aerosol loading is much greater over the NCP, and may have
strong interaction with the PBL through a positive feed-
back (Dong et al., 2017), which may contribute to the sig-
nificant nonlinear relationships over the NCP. Note that the
PBLH–PM2.5 correlations are apparently stronger for heav-
ily polluted regions than for clean regions. However, after
normalizing PM2.5 by AOD, the correlations are improved
preferentially for clean regions (where aerosol aloft makes a
larger fractional contribution to the total AOD), and thus, the
differences between clean and polluted regions are reduced
(Fig. S3). It further indicates that the background pollution
level plays a critical role in interpreting the PBLH–PM ob-
servations.

Figure 7. (a) Relationship between MPL-derived PBLH and PM2.5
over Beijing. (b) Relationship between MPL-derived PBLH and
PM2.5/AOD (unit: µg m−3 per AOD) over Beijing. The AOD data
are obtained from AERONET. Here, linear (red) and inverse fits
(black) are both shown. We only include data acquired during
10:00–15:00 local time, when the PBL is well developed.

As the NCP experiences the most pronounced seasonal-
ity in both PBLH and PM2.5, the relationship over this re-
gion also shows the most prominent seasonal differences
(Fig. S4). Figure 8 focuses on the seasonal dependence of
the PBLH and PM2.5 relationship over the NCP. The mag-
nitude of the slope between 1/PBLH and PM2.5 for this
region is ∼ 90 (unit: km µg m−3), with a correlation coef-
ficient of −0.55 during winter, and only ∼ 40 in summer.
For comparison, the seasonally aggregated relationship be-
tween PBLH and PM2.5 is presented in Fig. 8e. PM2.5 con-
centrations do not increase linearly with decreasing PBLH.
Specifically, PM2.5 increases rapidly with decreasing PBLH
when PBLH is lower than 1 km, but changes much more
slowly for PBLH > 1.5 km. The seasonal mean values for
PM2.5 and PBLH are presented as colored dots in Fig. 8e,
and the whiskers represent the standard deviations. For win-
ter, the PBLH is generally shallow and PM2.5 concentrations
are high, and thus PBLH shows the most significant negative
correlation with PM2.5. Conversely, in summer, the PBLH
is generally higher, PM2.5 concentrations are lower, and the
PBLH–PM2.5 relationship is virtually flat. Such seasonally
distinct PBLH–PM2.5 relationships have not previously been
studied quantitatively, and have the potential for improving
PM2.5 monitoring and predictions.

3.3 Association with horizontal transport

The PBLH mainly affects the vertical mixing and disper-
sion of air pollution, but horizontal transport also plays a
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Figure 8. The relationship between CALIPSO PBLH and PM2.5 over the NCP for (a) MAM, (b) JJA, (c) SON, and (d) DJF. (e) General
relationship between PM2.5 and PBLH aggregated over all seasons, with individual observations for each day plotted as gray dots. The
box-and-whisker plots showing 10th, 25th, 50th, 75th, and 90th percentile values of PM2.5 for each bin. The green, blue, pink, and red dots
present the mean values for MAM, JJA, SON, and DJF, respectively.

critical role in surface air quality. Figure 9a–b present the
PBLH–PM2.5 relationships over China under strong wind
(WS> 4 m s−1) and weak wind (WS< 4 m s−1) conditions.
Under strong wind conditions, PM2.5 is found to be much
less sensitive to PBLH than for weak wind. In addition,
Fig. 9c–d show the aerosol extinction profiles as a func-
tion of PBLH under strong and weak wind conditions, as
retrieved by the MPL in Beijing, with the Klett method ap-
plied (Klett, 1985). In both strong and weak wind conditions,
we find clear aerosol extinction gradients at the top of the
PBL. Nonetheless, under strong wind, the aerosol extinction
is typically low in the PBL, and the surface extinction does
not change significantly with different PBLHs. In this sit-
uation, the strong wind likely plays a dominant role in af-
fecting PM2.5 concentration by ventilating the PBL. Under
weak wind, the response of near-surface pollutants to PBLH
is more nonlinear, and both aerosol extinction and PM2.5 fall
rapidly as the PBLH increases from 600 to 1200 m.

We further consider the relationship between PBLH and
PM2.5 under different wind direction regimes for Beijing.
Two different regimes are easy to identify: a northerly wind
and a southerly wind; these are divided by the red line in
Fig. 10a. The northerly air comes from arid and semiarid re-
gions in northwest China and Mongolia, and is usually strong
and clean. The southerly wind comes from the southern part
of the NCP, with high humidity and aerosol content. To re-
late the connections between WS, PBLH, and surface air
quality, at least qualitatively, the ventilation rate (VR) can
be represented as VR=WS×PBLH (Tie et al., 2015). Fig-
ure 10b–c and d–e present the PBLH–PM2.5 and VR–PM2.5

Figure 9. The relationship between CALIPSO PBLH and PM2.5
over China for (a) strong wind (WS> 4 m s−1) and (b) weak wind
(WS< 4 m s−1). The aerosol extinction profiles at ∼ 550 nm de-
rived from the MPL in Beijing change with different MPL-derived
PBLHs under (c) strong wind and (d) weak wind conditions. In (c)
and (d), the black dots indicate the location of the PBL top.

relationships under southerly wind and northerly wind con-
ditions, respectively. For all wind conditions, the VR shows
a reciprocal relationship with surface PM2.5. Under northerly
wind conditions, both PBLH–PM2.5 and VR–PM2.5 relation-
ships are flatter and have lower correlation coefficients. The
northerly wind is apparently effective in removing pollutants
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Figure 10. (a) Relationship between wind direction/wind speed and
PM2.5 over Beijing. The red line divides the northerly wind and
southerly wind regimes. (b–c) The relationship between PM2.5 and
MPL-PBLH/ventilation rate (VR=WS×PBLH, unit: km m s−1),
for southerly winds over Beijing. (d–e) The relationship between
PM2.5 and MPL-PBLH/VR, for northerly winds over Beijing.

and may play a dominant role in affecting air quality. For the
southerly wind, the PM2.5 concentration is highly sensitive
to PBLH and VR values.

To further illustrate the coupling effects of PBLH and WS
on surface pollutants, Fig. 11a presents the relationship be-
tween early-afternoon WS and PM2.5 concentration across
China. Overall, WS is negatively correlated with PM2.5, al-
though a few stations over southwest China show positive
correlations. A negative correlation might be expected in
general, as strong winds can be effective at removing air pol-
lutants; however, other factors such as wind direction must
also be considered, as, for example, upwind sources could
increase pollution under higher wind conditions. There are
positive correlations between PBLH and near-surface WS in
most cases (Fig. S5a), and thus, low PBLH and weak WS
tend to occur together over much of China. These unfavor-
able meteorological conditions for air quality would exacer-
bate severe pollution episodes.

To consider horizontal and vertical dispersion jointly, we
investigate the nationwide relationships between the VR and
PM2.5. In general, the VR is overwhelmingly negative corre-
lated with surface PM2.5 (Fig. S5b). Based on Fig. 10, the VR
is typically reciprocal to PM2.5 for different wind conditions,
and thus, we use the function VR= A/PM2.5 to character-
ize the relationship between the VR and PM2.5, with A as
the fitting parameter. The spatial distribution of A, presented
in Fig. 11b, shows the largest values over the NCP, indicat-

Figure 11. (a) Spatial distribution of linear correlation coefficients
(R) for the WS–PM2.5 relationship. (b) Spatial distribution of fit-
ting parameter (A) for the VR–PM2.5 relationship. The function
PM2.5 = A/VR is used to characterize the relationship between VR
and PM2.5, with A (unit: km µg m−3) as the fitting parameter. Both
WS and PM2.5 are obtained from surface data, and PBLH is derived
from CALIPSO. Here and in the following analysis, dots marked
with black circles indicate where the relationship is statistically sig-
nificant at the 99 % confidence level.

ing that the PM2.5 concentration is highly sensitive to the VR
there. Moreover, VRs are relatively large over the coastal ar-
eas, where sea–land breezes could play a role in dispersing
air pollution. The detailed relationships and fitting functions
for four ROIs are presented in Fig. S6. We note that although
there are large regional differences in the PBLH–PM2.5 rela-
tionship (Fig. 5), the VR–PM2.5 relationships are similar for
the different study regions. Therefore, by combining vertical
and horizontal dispersion conditions, the overall VR appar-
ently has a similar effect on PM2.5 for all four ROIs.

3.4 Correlations with topography

The PBL structure and PM2.5 concentration can both be af-
fected by topography. We divided the sites into two cate-
gories based on elevation: plains (elevation< 0.5 km) and
highlands (elevation> 1 km). Figure 12a–d present the corre-
lation coefficients and slopes in the inverse fit between PM2.5
and PBLH for the plains and highland areas. For calculat-
ing the correlation coefficient and slope, we require that the
number of matched CALIPSO PBLH and PM2.5 samples is
larger than 15 for each site. Much higher correlation coef-
ficients are found in the plains than the highlands, and the
slope (i.e., linear slopes between − 1

PBLH and PM2.5) in the
plains is ∼ 3 times that in the highlands. A reciprocal re-
lationship is shown between station elevation and the slope
between − 1

PBLH and PM2.5 (Fig. 12e). The magnitudes of
slopes decrease dramatically with elevation increase, for el-
evations between 0 and 500 m. Local emissions also affect
aerosol loading, and differences between plains and high-
land areas regarding local source activity could be impor-
tant here as well. Figure 12e shows that the low-elevation
regions are typically more polluted than highland areas, and
the magnitudes of the slopes tend to be higher. Here, we uti-
lized the inverse fitting method to reveal the different PBLH–
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Figure 12. Stratification by terrain elevation. The correlation coeffi-
cients (R) and slopes (unit: km µg m−3) between CALIPSO PBLH
and PM2.5 for the inverse fit (f (x)= A/x+B) are shown for
the (a–b) plains and (c–d) highland areas. Note the slope in the
inverse fit is defined as A. (e) The slopes of the inverse fit (i.e.,
linear slopes between − 1

PBLH and PM2.5) under different station
elevations, with color shading indicating station mean PM2.5 con-
centration. (f) Box-and-whisker plots showing the 10th, 25th, 50th,
75th, and 90th percentile values of the early-afternoon WS for plain
and highland regions. The dots indicate the mean values.

PM relationships for the plains and highland areas, and we
reach a similar conclusion by using the linear fitting method
(Fig. S7).

Returning to Fig. S3, stronger correlations for PBLH–
PM2.5 relationships are found over polluted regions, which
also correspond to the plains areas, due to strong local emis-
sions. Therefore, high aerosol loading is likely to be another
factor contributing to the strong correlation between PBLH
and PM2.5 over the plains, whereas the low PM2.5 concen-
tration may contribute to the weak PBLH–PM2.5 correlation
over the highlands.

In addition, horizontal transport is associated with topog-
raphy. Thus, we illustrate the distribution of WS for plains
and highland areas in Fig. 12f. WS is generally larger for
highland areas, especially for the strongest wind cases. In
fact, the 10 % and 25 % quantiles of WS are nearly the
same between plains and highland areas, whereas there are

clear differences in the 75 % and 90 % quantiles. Strong
wind cases account for 37% of the total over highland ar-
eas, but only 27 % of the total over the plains. As discussed
in Sect. 3.3, strong wind can effectively remove surface pol-
lutants, and can play a dominant role in determining local
pollution levels. In this situation, PBLH might not play as
critical a role in PM2.5 concentration. Thus, mountain winds,
along with less local emission, are likely to be leading factors
accounting for the differences in PBLH–PM2.5 correlations
between plains and highland areas.

Other factors could come into play as well, such as the
vertical distribution of aerosol, the insolation, and the actual
single-scattering albedo of the particles; further examination
of these phenomena is beyond the scope of the current paper.

4 Discussion and conclusions

Based on 10 years of CALIPSO measurements and other
environmental data obtained from more than 1500 stations,
large-scale relationships between PBLH and PM2.5 are as-
sessed over China. Although the PBLH–PM2.5 correlations
are generally negative for the majority of conditions, the
magnitude, significance, and even sign vary greatly with
location, season, and meteorological conditions. Nonlinear
responses of PM2.5 to PBLH evolution are found under
some conditions, especially for the NCP, the most polluted
region of China. We further applied an inverse function
(f (x)= A/x+B) to characterize the PBLH–PM2.5 relation-
ships, with overall better performance than a linear regres-
sion. The nonlinear relationship between PBLH and PM2.5
shows stronger interaction when the PBLH is shallow and
PM2.5 concentration is high, which typically corresponds
to the wintertime cases. Specifically, the negative correla-
tion between PBLH and PM2.5 is most significant during
winter. Moreover, we find that regional differences in the
PBLH–PM2.5 relationships are correlated with topography.
The PBLH–PM2.5 correlations are found to be more signif-
icant in low-altitude regions. This might be related to the
more frequent air stagnation and strong local emission over
China’s plains, as well as a greater concentration of emission
sources. The mountain breezes and a larger fraction of trans-
ported aerosol above the PBL contribute to weakening of the
PBLH–PM2.5 correlation over highland areas.

Note that the PBLH–PM2.5 relationships are not always
significant, nor are they always negative (Geiß et al., 2017).
In addition to PBLH, PM2.5 is also affected by other fac-
tors, such as emissions, wind, synoptic patterns, and atmo-
spheric stability. In some situations (e.g., strong wind and
low aerosol loading), PBLH does not play a dominant role
in modulating surface pollutants, and this results in weak or
uncorrelated relationships between PBLH and PM2.5. Weak
PBLH–PM2.5 correlations are a common feature over rela-
tively clean regions. Due to the importance of regional pol-
lution levels, we normalized PM2.5 by MODIS total-column

www.atmos-chem-phys.net/18/15921/2018/ Atmos. Chem. Phys., 18, 15921–15935, 2018



15932 T. Su et al.: Assessment of relationships between PBLH and PM2.5 over China

AOD to account for the background aerosol in different re-
gions. Compared to PBLH–PM2.5 correlations, the correla-
tions between PBLH and normalized PM2.5 (PM2.5/AOD)
increased significantly for clean regions, resulting in smaller
regional differences overall. The retrieval of surface PM2.5
from AOD constraints has been investigated in many studies.
The detailed relationships between PBLH and PM2.5/AOD
over different ROIs are also expected to be significant for re-
lating PM2.5 to remotely sensed AOD, due to the way PBLH
affects near-surface aerosol concentration.

Horizontal transport also shows significant inverse cor-
relation with PM2.5 concentrations. WS and PBLH tend to
be positively correlated in the study regions, which means
meteorologically favorable horizontal and vertical disper-
sion conditions are likely to occur together. Wind direction
can also significantly affect the PBLH–PM2.5 relationship.
Strong wind with clean upwind sources plays a dominant
role in improving air quality over Beijing, for example, and
leads to weak PBLH–PM2.5 correlation. The combination of
WS and PBLH, representing a ventilation rate (VR), shows
a reciprocal correlation with surface PM2.5 in all the regions
studied. The VR is also found to have the largest impact on
surface pollutant accumulation over the NCP.

The feedback of absorbing aerosol is also a potential
factor affecting the PBLH–PM2.5 relationships. Compared
with southeast China (e.g., PRD), absorbing aerosol load-
ing is much higher over the NCP, and is reported to have
strong interaction with the PBL via a positive feedback in
this region (Dong et al., 2017; Ding et al., 2016; Huang et
al., 2018). Such conclusions are consistent with our results,
which show significant PBLH–PM2.5 correlations over the
NCP and weak correlations over the PRD. The important
feedback of absorbing aerosols may also contribute to the
nonlinear relationship between PBLH and PM2.5. This issue
merits further analysis using comprehensive measurements
from field experiments, from which integrated aerosol condi-
tions and model simulations can account for aerosol radiative
forcing while controlling for the other relevant variables.

Our work comprehensively covers the relationships be-
tween PBLH and surface pollutants over large regional spa-
tial scales in China. Multiple factors, such as background
pollution level, horizontal transport, and topography, are
found to be highly correlated with PBLH and near-surface
aerosol concentration. Such information can help improve
our understanding of the complex interactions between air
pollution, boundary layer depth, and horizontal transport,
and thus, can benefit policymaking aimed at mitigating air
pollution at both local and regional scales. Our findings pro-
vide deeper insight and contribute to the quantitative under-
standing of aerosol–PBL interactions, which could help in
refining meteorological and atmospheric chemistry models.
Further, this work may enhance surface pollution monitoring
and forecasting capabilities.
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