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1. Inverse fitting 16 

Since the PBLH and PM2.5 are correlated but not linearly correlated under most 17 

conditions, the inverse function [𝑓(𝑥) = 𝐴
𝑥⁄ + 𝐵 ] is used to fit the relationship. 18 

Following Winship and Radbill (1994), the fitting parameters (A and B) and the 19 

coefficient of determination of the PBLH–PM2.5 relationship are derived using this 20 

inverse fitting function. The correlation coefficient of the inverse fit would be positive 21 

when PBLH and PM2.5 are positively correlated, otherwise it would be negative. 22 

Moreover, the normalized sample density at each location in a scatter plot represents the 23 

probability distribution in two dimensions (Scott, 2015). Then setting the weighting 24 

function of the inverse fit equal to the normalized density produces the best-fitting results 25 

representing the majority of cases. The magnitude of the correlation coefficient (𝑅†) is 26 

designed to represent the degree to which the data fit an inverse relationship.  27 

 28 

2. Standardized multiple linear regression 29 

    We use a standardized multiple linear regression method following previous 30 

studies (Igel and van den Heever, 2015; Stolz et al., 2017). The confounding 31 

relationships between daily PM2.5 and multiple meteorological factors are established by 32 

the standardized regression equation. The standardized regression equation with seven 33 

predictor variables 𝑥1, 𝑥2, 𝑥3, 𝑥4 (PBLH, WS, RH, and rainfall amount) and the response 34 

y (PM2.5) can be written as:  35 

y = 𝛼1𝑥1 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝛼4𝑥4           (1) 36 

where y and 𝑥𝑖 are standardized variables derived from the raw variables Y and Xi by 37 

subtracting the sample means (Y, Xi) and dividing by the sample standard deviations (𝛿𝑌, 38 

𝛿𝑖):  39 

y =
𝑌 − 𝑌̅

𝛿𝑌
,        𝑥𝑖 =

𝑋𝑖 − 𝑋𝑖̅̅̅

𝛿𝑖
, 𝑖 = 1, 2, 3, 4           (2) 40 

Standardized regression coefficients ignore the independent variables’ scale of units, 41 

which makes the slope estimates comparable and shows the relative weights to the 42 

changes in LSP occurrence hours. A partial correlation is done to control the other 43 

predictors and to study the effect of each predictor separately.  44 

 45 

3. Similarity check 46 



 

For searching the similar meteorological condition of CLD haze event over Beijing, 47 

we use the five-day smoothed time series of each parameter during winter from 2013 48 

to 2020. For instance, we define the PBLH condition is similar, if the difference in 49 

five-day smoothed time series is less than 20%, which means: 50 

|𝑃𝐵𝐿𝐻̅̅ ̅̅ ̅̅ ̅̅
𝐴 − 𝑃𝐵𝐿𝐻̅̅ ̅̅ ̅̅ ̅̅

𝐶𝐿𝐷| < 20%𝑃𝐵𝐿𝐻̅̅ ̅̅ ̅̅ ̅̅
𝐶𝐿𝐷           (3) 51 

where A is a five-day period, 𝑃𝐵𝐿𝐻̅̅ ̅̅ ̅̅ ̅̅
𝐴 and 𝑃𝐵𝐿𝐻̅̅ ̅̅ ̅̅ ̅̅

𝐶𝐿𝐷 represent the mean value of PBLH 52 

during period A and CLD, respectively. The procedure is the same for WS and RH. 53 

Moreover, we defined all three parameters are similar if the difference in five-day 54 

smoothed time series is less than 20% for both PBLH, WS, and RH. 55 

 56 
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Figures 73 

 74 

Figure S1. (a) Topography of eastern China. The red line divided northern China and 75 

southern/central China. Beijing and Northeast China are highlighted by the pink circle 76 

and red circle, respectively. (b) Locations of environmental monitoring stations. (c) 77 

Locations of radiosonde stations.  78 
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 92 

Figure S2. The comparison of PBLHs derived from parcel method and two standard 93 

methods (1.5-theta method and Liu and Liang method) at 1400 BJT during summertime. 94 

Parcel method uses morning radiosonde and surface meteorological data, and standard 95 

methods use radiosonde at 1400 BJT. The linear regression equations and correlation 96 

coefficients (R) are given in each panel.  97 
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 114 

Figure S3. The differences in daytime temperature between mean values during the 115 

COVID-19 lockdown and the climatological mean during the same period of the years 116 

2016 to 2019.  117 
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 125 

Figure S4. The surface pressure anomalies (relative to the monthly mean) during the 126 

CLD haze event. The location of Beijing is marked as the red star. The orange line 127 

indicates the coastline/border. The data are obtained from MERRA-2 reanalysis data. 128 

 129 



 

 130 

Figure S5. Profiles of temperature tendency due to the dynamic processes from 131 

MERRA-2 reanalysis data. Red line represents the value at 1230 BJT during the CLD 132 

haze event, and blue line represents the corresponding mean value during winter. The 133 

structure of temperature tendency during the CLD haze event facilitate the temperature 134 

inversion, and thus increase the lower-atmosphere stability and reduce the PBLH. 135 



 

Tables 136 

Table S1. List of radiosonde stations over Beijing and northeast China. 137 

(http://data.cma.cn/en/) 138 
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 160 

Regions of 

interest 

Station 

code 
City 

Elevation 

(m) 

Beijing 54511 Beijing 30 

Northeast 

China 

54662 Dalian 90 

50953 Harbin 143 

54161 Changchun 239 

50745 Qiqihar 148 

54292 Yanji 256 

http://data.cma.cn/en/


 

Table S2. Statistics of the partial correlation coefficients of the relationships between 161 

PM2.5 and multiple meteorological parameters (PBLH, WS, RH, and rainfall amount) 162 

during CLD. Also shown are standardized multiple regression equations of PM2.5 onto 163 

the meteorological parameters. Asterisks (*) denote the correlations that are statistically 164 

significant at the 95% confidence level. PBLH shows significant partial correlations with 165 

PM2.5 over both Beijing and Northeast China. 166 

ROIs 
Partial Correlation Coefficients with PM2.5 (y) 

PBLH (𝑥1) WS (𝑥2) RH (𝑥3) Rainfall (𝑥4) 

Beijing 
-0.50* -0.05 0.18 -0.42* 

Standardized multiple regression: y = −0.59𝑥1 − 0.05𝑥2 + 0.18𝑥3 − 0.45𝑥4 

Northeast 

China 

-0.44* -0.41* 0.14 -0.19 

Standardized multiple regression: y = −0.40𝑥1 − 0.41𝑥2 + 0.09𝑥3 − 0.13𝑥4 
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 188 

Table S3. PM2.5 and meteorology during CLD haze event and other three shallow PBL 189 

periods during 2013–2019. 190 

 Date PM2.5 (𝛍𝐠 𝐦−𝟑) PBLH (m) WS (m/s) RH (%) 

CLD haze 

event 

20200213 212 425 2.3 84 

20200212 195 648 1.2 60 

20200211 232 437 1.6 60 

20200210 116 429 1.2 47 

20200209 127 507 1.6 58 

Period I 

20170104 287 237 1.3 78 

20170103 287 332 1.7 72 

20170102 231 133 2.3 67 

20170101 497 301 1.5 88 

20161231 312 545 1.4 70 

20161230 166 647 1.3 67 

Period II 

20161221 407 378 1.1 78 

20161220 362 241 1.3 89 

20161219 205 558 1.2 56 

20161218 213 512 1.1 61 

20161217 206 320 1.7 58 

20161216 108 522 1.2 47 

Period III 

20151226 239 245 1.9 79 

20151225 553 238 1.5 97 

20151224 58 296 1.5 74 

20151223 211 539 1.3 73 

20151222 306 168 1.9 86 

20151221 215 420 1.3 68 

 191 


