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A B S T R A C T

A primary challenge in cloud detection is associated with highly mixed scenes that are filled with broken and
thin clouds over inhomogeneous land. To tackle this challenge, we developed a new algorithm called the
Random-Forest-based cloud mask (RFmask), which can improve the accuracy of cloud identification from
Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager and
Thermal Infrared Sensor (OLI/TIRS) images. For the development and validation of the algorithm, we first chose
the stratified sampling method to pre-select cloudy and clear-sky pixels to form a prior-pixel database according
to the land use cover around the world. Next, we select typical spectral channels and calculate spectral indices
based on the spectral reflection characteristics of different land cover types using the top-of-atmosphere re-
flectance and brightness temperature. These are then used as inputs to the RF model for training and establishing
a preliminary cloud detection model. Finally, the Super-pixels Extracted via Energy-Driven Sampling (SEEDS)
segmentation approach is applied to re-process the preliminary classification results in order to obtain the final
cloud detection results. The RFmask detection results are evaluated against the globally distributed United States
Geological Survey (USGS) cloud-cover assessment validation products. The average overall accuracy for RFmask
cloud detection reaches 93.8% (Kappa coefficient = 0.77) with an omission error of 12.0% and a commission
error of 7.4%. The RFmask algorithm is able to identify broken and thin clouds over both dark and bright
surfaces. The new model generally outperforms other methods that are compared here, especially over these
challenging scenes. The RFmask algorithm is not only accurate but also computationally efficient. It is poten-
tially useful for a variety of applications in using Landsat data, especially for monitoring land cover and land-use
changes.

1. Introduction

Clouds are ubiquitous with an annual and global mean amount of
~66%, especially in the tropics (IPCC, 2013; Ju and Roy, 2008; Zhang
et al., 2004). Clouds influence the atmospheric environment and global
climate change by affecting the radiation budget balance by absorbing
and reflecting surface and solar energy (Andreae and Rosenfeld, 2008;
Li et al., 2016; Ramanathan et al., 1989; Stephens, 2005; Guo et al.,
2017). The presence of clouds hinders the quantitative extraction of
surface and atmospheric parameters for such purposes as classification

and monitoring of land-use and land-cover changes (Sun et al., 2016a;
Wulder et al., 2019; Zhu and Woodcock, 2012), and retrievals of aerosol
optical properties (Li et al., 2009; Wei et al., 2017, 2018; Su et al., 2018,
2020), and fine particulate matters (Wei et al., 2019a, 2019b).

Cloud detection is an essential step for many remote sensing ap-
plications (Arvidson et al., 2001; Irish, 2000). Grossly speaking, clouds
may be classified as thick and thin clouds, and/or homogeneous and
broken clouds. Thick clouds and homogenous clouds are usually easy to
identify because of their distinct features. Due to their small size, ten-
uous features, and irregular shapes, broken and thin clouds are much
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more difficult to identify. Thin clouds, in particular, are usually trans-
lucent, revealing diverse underlying surfaces in images. It is usually
very challenging to identify semi-transparent clouds because their
spectral signals come from both clouds and underlying surfaces (e.g.,
vegetation, soil, and water), especially over bright surfaces (Gao et al.,
2002; Irish, 2000; Rossow and Dueñas, 2004; Sun et al., 2016a, 2017).

Over the years, many cloud identification methods have been pro-
posed for applications with various satellite imaging sensors such as the
Advanced Very High Resolution Radiometer (AVHRR, Rossow and
Dueñas, 2004; Saunders and Kriebel, 1988), the MODerate-resolution
Imaging Spectroradiometer (MODIS; Ackerman et al., 2008; Frey et al.,
2008; Lyapustin et al., 2008), and the Multi-angle Imaging Spectro-
Radiometer (MISR, Girolamo and Wilson, 2003; Yang et al., 2007).
These traditional approaches are chiefly threshold-based applied to
multi-spectral channels (e.g., thermal infrared, carbon dioxide, and
water vapor absorption channels). For high spatial resolution sensors
onboard different satellite platforms, e.g., the U.S. Landsat, the French
Sentinel, and Satellite pour l'Observation de la Terre (SPOT), and the
Chinese Huan Jing (HJ) and Gaofen (GF) satellites, the spectral chan-
nels are usually much fewer, posing more challenges for cloud identi-
fication.

Landsat satellite data have been most widely adopted for studying
vegetation phenology, agriculture and forestry, surface temperature
monitoring, and air pollution monitoring (Sun et al., 2016b; Wei et al.,
2017; Wu et al., 2019; Wulder et al., 2019) by virtue of its high spatial
resolution, global coverage, and long-term data record of over 47 years.
Currently, there are three widely used generations of Landsat sensors:
the Thematic Mapper (TM) onboard Landsat 4/5 (launched in 1984),
the Enhanced Thematic Mapper Plus (ETM+) onboard the Landsat 7
(launched in 1999), and the Operational Land Imager and Thermal
Infrared Sensor (OLI/TIRS) onboard the Landsat 8 (launched in 2013).
Table 1 provides detailed information about Landsat 4, 5, 7, and 8 sa-
tellites.

Over the years, an increasing number of cloud detection algorithms
have been developed for Landsat satellites. Irish (2000) proposed the
Automated Cloud Cover Assessment (ACCA) algorithm for cloud
screening from Landsat images based on multiple spectral-channel fil-
ters and thermal-infrared bands (Irish et al., 2006). Subsequently, Zhu
and Woodcock (2012) proposed a Function of mask (Fmask) algorithm
to identify clouds from Landsat imagery through a series of spectral
tests and probabilities of normalized temperature, spectral variability,
and brightness. Sun et al. (2016a) developed a Universal Dynamic
Threshold Cloud Detection (UDTCDA) algorithm to identify clouds
based on a priori constructed surface reflectance database, minimizing
the effects of mixed surfaces and improving the overall accuracy of
cloud recognition. Orishi et al. (2008) proposed a propose a Cloud
Discrimination Algorithm for Landsat 8 (CDAL8) according to multiple
judgment tests. Zhai et al. (2018) proposed a unified cloud detection

algorithm with spectral indices (CSD-SI) according to the physical re-
flective characteristics of multiple optical remote sensing sensors. Be-
side traditional threshold-based methods, nowadays, artificial in-
telligence methods become hot, and several deep learning methods
based on the convolutional neural network have been modified for
detecting clouds, e.g., multi-scale convolutional feature fusion (MSCFF;
Li et al., 2019), SegNet (Chai et al., 2019), and U-Net (Wieland et al.,
2019).

Despite some unique merits of these algorithms, due to complex and
changeable surface conditions, it is difficult to determine appropriate
cloud recognition thresholds using a few spectral channels. Although
traditional threshold-based methods are simple and easy to implement,
they still suffer from large errors in identifying broken and thin clouds,
especially over bright surfaces (Frantz et al., 2018; Irish et al., 2006;
Oishi et al., 2018; Rossow and Dueñas, 2004). Deep learning ap-
proaches yield stronger data mining capabilities and can achieve more
accurate cloud detection results. However, deep learning has more
complex model parameters and needs to establish hundreds or thou-
sands of internal network layers. As such, model adjustment and
training time increase dramatically (Li et al., 2017, 2019; Wei et al.,
2020; Zhai et al., 2018). In addition, model training and running are
highly dependent on the computer configuration, making them difficult
to be used operationally in data preprocessing for meteorological or
environmental applications.

Therefore, a new, efficient, and accurate cloud detection algorithm
is proposed here, combining the tree-based ensemble learning ap-
proach, i.e., Random Forest (RF, Breiman, 2001), and a superpixel
image segmentation technology, namely, the Superpixels Extracted via
Energy-Driven Sampling (SEEDS, Bergh et al., 2012), for application to
Landsat imagery. Clear-sky and cloudy pixel database construction and
spectral feature selection are first performed to provide adequate
training samples. They are then used as inputs to the pixel-based RF
model. Finally, the object-oriented SEEDS segmentation algorithm is
applied for post-processing to reduce the noise and obtain the final
cloud detection results. Sections 2 and 3 introduce the data source and
RF-based cloud mask (RFmask) algorithm. Section 4 presents qualita-
tive and quantitative validations of the RFmask results, and Section 5
and Section 6 give a discussion, summary and conclusion of this study.

2. Data source

In this study, two United States Geological Survey (USGS) cloud-
cover assessment validation products, i.e., L7 Irish Cloud Validation
Masks and L8 Biome Cloud Validation Masks, are selected and used for
cloud detection experiments and validation (U.S. Geological Survey,
2016a, 2016b). The L7 Irish dataset includes a total of 206 Landsat 7
ETM+ (scan line corrector on) Level-1G scenes, evenly distributed in
nine latitude zones around the world, including the austral, boreal, mid-

Table 1
Detailed information about the Landsat 4, 5, 7, and 8 satellites.

Landsat 4 and 5 TM Landsat 7 ETM+ Landsat 8 OLI/TIRS Band type

Band index Wavelength (μm) Spatial resolution Band index Wavelength (μm) Spatial resolution Band index Wavelength (μm) Spatial resolution

– – – – – 1 0.435–0.451 30 m Coastal
1 0.45–0.52 30 m 1 0.441–0.514 30 m 2 0.452–0.512 30 m Blue
2 0.52–0.60 30 m 2 0.519–0.601 30 m 3 0.533–0.590 30 m Green
3 0.63–0.69 30 m 3 0.631–0.692 30 m 4 0.636–0.673 30 m Red
4 0.76–0.90 30 m 4 0.772–0.898 30 m 5 0.851–0.879 30 m NIR
5 1.55–1.75 30 m 5 1.547–1.749 30 m 6 1.566–1.651 30 m MIR
6 10.40–12.50 120 m 6 10.31–12.36 60 m 10 10.60–11.19 100 m TIR-1
7 2.08–2.35 30 m 7 2.064–2.345 30 m 7 2.107–2.294 30 m SWIR
– – – 8 0.515–0.896 15 m 8 0.503–0.676 15 m Panchromatic
– – – – – – 9 1.363–1.384 30 m Cirrus
– – – – – 11 11.50–12.51 100 m TIR-2

NIR, MIR, SWIR, and TIR represent the near-infrared, mid-infrared, shortwave infrared, and thermal-infrared bands, respectively.
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latitude, polar, subtropical, and tropical regions (Irish et al., 2006;
Scaramuzza et al., 2012). The L8 Biome dataset includes a total of 96
Landsat 8 OLI/TIRS terrain-corrected Level-1T scenes, evenly dis-
tributed globally and covering most land surface types, e.g., barren,
forest, grass/crops, shrubland, snow/ice, water, and wetlands types
(Foga et al., 2017). All of these selected Landsat images cover varying
degrees of cloud amount and almost all types of underlying surfaces to
ensure that these data are fully representative. Therefore, all the L7
Irish (206) and L8 Biome (96) scenes are employed in this study, as
shown in Fig. 1.

3. Methodology

Satellite-received signals are recorded as Digital Numbers (DN) from
visible to thermal infrared channels in Landsat imagery. Therefore,
before cloud detection, the DN values recorded in these channels are
first translated into the top-of-atmosphere (TOA) reflectance or
brightness temperature (BT) through radiometric calibration (Chander
et al., 2009; Sun et al., 2016b). In this study, proposed is a new cloud
mask algorithm for Landsat imagery (named the RFmask algorithm) is
proposed, containing three key steps, namely, the pixel-based RF clas-
sification, the object-oriented SEEDS segmentation, and the post-clas-
sification processing.

3.1. RF classification

RF (Breiman, 2001) is a new and highly flexible machine learning
algorithm with a wide range of applications. It has been successfully
adopted in different research fields, e.g., marketing management and
health insurance modeling (Bahnsen et al., 2015; Khalilia et al., 2011;
Mamyrova et al., 2014), risk assessment and prediction
(Malekipirbazari and Aksakalli, 2015; Wang et al., 2015), and near-
surface fine-particle estimation (Hu et al., 2017; Wei et al., 2019a).
However, it has rarely been used for land use classification (Nitze et al.,
2015; van Beijma et al., 2014), especially for cloud recognition. It is
thus selected for use in this study.

Different from traditional machine learning methods, RF is a non-
linear algorithm that integrates multiple decision trees through the idea
of ensemble learning. There are two key parts: one is “random”, which
refers to building a decision tree by random sampling; the other is
“forest”, which consists of hundreds of decision trees. Last, each tree

acts as a weak classifier, and all the weak classifiers are majority voted
to form a strong classifier. There are four key steps in RF classification:

(1) n samples are randomly selected from the original dataset (N) as a
training set using the Bootstrap aggregating (Bagging) resampling
algorithm;

(2) In each node generated, D features are selected randomly and re-
peatably, used to split the sample set, respectively. The Gini index is
used to calculate the criterion (Jiang et al., 2009; Wei et al., 2020)
and determine the best split feature. Note that each tree can grow
without pruning during the split process;

(3) Steps 1 to 2 are repeated for a total ofM times, andM decision trees
are built in the RF. The Classification And Regression Tree (CART,
Breiman et al., 1984) algorithm is used for tree building;

(4) Test samples are predicted by the RF obtained from training, and
the final classification results are determined by majority voting the
classification results of all week classifiers.

Three main properties characterize the performance of the RF model
during the classification. The first one is that the RFs converge. This
ensures that the model does not over-fit as the number of decision trees
increases. The margin function (m) is used to measure the degree that
the average number of votes of the right class at random vectors X and
Y exceeds the average vote (avi) of any other class:

= = =v f h X Y max v f h X jm(X, Y) a ( ( ) ) (a ( ( ) ))i i j Y i i (1)

where f represents the indicator function, and hi(i = 1, 2, …, k) re-
presents an ensemble of classifiers. The greater the margin, the greater
the confidence in the classification. The generalization error (GE*) re-
fers to the error of the model on the test sample set,

= <E m X YGE ( ( , ) 0)X Y, (2)

With the increase in decision trees, for almost all sequences (θ), the
GE* converges to

= = = <E E h X Y max E h X jlim GE ( ( ( , ) ) ( ( ( , ) ) 0)X Y i j Y i
i

, (3)

The other properties are strength (s) and correlation (r), used to
measure the accuracy and the dependence between individual classi-
fiers and to derive the upper bound for the GE*:

s sGE r(1 )/2 2 (4)

Fig. 1. The spatial distributions of all the Landsat 7 Irish training (marked in cyan) and validation (marked in black) images, and Landsat 8 Biome training (marked in
pink) and validation (marked in red) images used in this study. The background map is obtained from the MODIS global land use cover product in 2016 (https://
search.earthdata.nasa.gov). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The greater the strength and the smaller the correlation between
decision trees, the more accurate the model is. Breiman (2001) provides
detailed information about the RF algorithm.

3.1.1. Pixel database construction
In this study, a prior-pixel database is first constructed for Landsat 7

and 8 satellites to provide abundant data samples for model training
and validation. The pixel database contains a cloudy-pixel and a clear-
sky-pixel part. For this purpose, the underlying surfaces are first divided
into nine main categories according to the MODIS global land cover
product, i.e., barren, forest, grass, crops, shrubland, urban, wetlands,
water, and snow/ice. Then the training images are stratified by evenly
selecting images of various cloud amounts,< 35% (Clear), 35–65%
(MidClouds), and > 65% (Cloudy), from both the Landsat 7 Irish and
Landsat 8 Biome Cloud Cover Assessment Validation Database (U.S.
Geological Survey, 2016a, 2016b) according to the land use cover. This
can ensure that there are enough cloudy and clear-sky pixels in both
model training and validation images with different cloud amounts.

In our study, all the cloudy and clear-sky pixels from the whole
image are selected as training samples to build the pixel database. This
ensures that the training samples include almost all kinds of clouds
(e.g., thick, thin, and broken clouds) and clear skies over diverse land-
use types. However, because the RF classification is performed at the
pixel level, it is also feasible to randomly select an appropriate pro-
portion from 60% to 100% of training samples from the whole image to
improve the training efficiency. This is highly dependent on user de-
mand and computer performance. Here, about one-third of the Landsat
7 Irish (~68 of 206 images) and Landsat 8 (~32 of 96 images) Biome
images are stratified as training images. The remaining two-thirds are
used as validation images, which are evenly distributed throughout the
world (Fig. 1). Then all the clear-sky pixels and cloudy pixels collected
from all the selected Landsat 7 Irish and Landsat 8 training images are
used to construct the prior pixel database encompassing the nine main
categories.

3.1.2. Feature attribute selection
The next important step is to select the feature attributes of the data

samples used in the RF classification. The TOA reflectance of clouds is
much higher than most typical ground objects (e.g., water, soil, vege-
tation, artificial buildings, and rocks) in visible channels under ideal
conditions. Also used to detect clouds are the near-infrared (NIR), mid-
infrared (MIR), and short-wave infrared (SWIR) channels due to no-
ticeable differences between the reflectance of clouds and above-
ground objects. However, snow and ice have similar spectral char-
acteristics as clouds from short to medium wavelengths, so thermal
infrared channels play an important role in distinguishing them due to
their large differences in brightness temperature (Lin et al., 2012; Sun
et al., 2016a; Zhu and Woodcock, 2012). More importantly, an addi-
tional cirrus channel was designed for Landsat 8 satellite, which has
proven useful in detecting cirrus clouds (Gao and Li, 2000, 2017; Gao
et al., 2002; Shen et al., 2015; Zhu et al., 2015). Thus Landsat 7 bands
1–7 and Landsat 8 bands 1–11 (excluding band 8) are selected as basic
spectral features.

Thick clouds can be easily distinguished from pure ground objects.
However, thin and broken clouds are less distinguishable from under-
lying surfaces, and the mixed land/cloud pixels formed by them are
ubiquitous in remote sensing images. The spectral reflectance of dif-
ferent surface types can change according to the cloud amount. Remote
sensing images can also become gradually blurred, affected by in-
creasing air pollution, resulting in more complex spectral character-
istics of ground objects. This largely increases the difficulties in separ-
ating clouds from different underlying surfaces through discrete
spectral channels. This is also the main problem faced by traditional
threshold-based methods (Sun et al., 2016a; Zhu and Woodcock, 2012).

More importantly, unlike other image-based machines or deep
learning methods, RF is a supervised classification method, and its basic

unit is the decision tree. It is composed of multiple decision trees whose
construction highly depends on the input attributes. When the node is
splitting in one decision tree construction, all input attributes are in-
dependently selected, and no other combination operation is performed
internally. Therefore, the spectral absorption and reflection character-
istics of these key land cover types previously mentioned are enhanced
by introducing additional spectral indices.

For natural vegetation, four typical vegetation indices are con-
sidered: the widely used Normalized Difference Vegetation Index
(NDVI, Eq. (5)), which easily saturates in densely vegetated areas; the
Ratio Vegetation Index (RVI, Eq. (6)), which can enhance the radiation
difference between vegetation and soil backgrounds; the Enhanced
Vegetation Index (EVI, Eq. (7)), which uses the blue channel to enhance
the vegetation signal by correcting for the effect of the soil background
and aerosol scattering; and the SWIR-based NDVI (NDVIswir, Eq. (8)),
which is not sensitive to aerosols:

= +NDVI ( )/( )NIR Red NIR Red (5)

=RV I /NIR Red (6)

= + +EVI 2.5( )/( 6 7.5 1)NIR Red NIR Red Blue (7)

= +NDVI ( )/( )swir SWIR MIR SWIR MIR (8)

For water, the Normalized Difference Water Index (NDWI, Eq. (9))
is selected to highlight water bodies. However, NDWI is less effective in
extracting water bodies when more buildings are in the background.
Thus, a customized TOA reflectance ratio (TRng) involving NIR and
green-channel reflectances is calculated simultaneously to help enhance
the water information:

= +NDWI ( )/( )Green NIR Green NIR (9)

Similarly, the Normalized Difference Building Index (NDBI, Eq.
(10)) is selected to enhance the impervious surface layers over urban
areas. For barren surfaces, a customized TOA reflectance ratio (TRnm)
involving NIR and MIR channels is formulated to enhance the bright
rock and desert information (Irish, 2000). The Normalized Difference
Snow Index (NDSI, Eq. (11)) is calculated to enhance the snow and ice
information in Landsat images:

= +NDBI ( )/( )MIR NIR MIR NIR (10)

= +NDSI ( )/( )Green MIR Green MIR (11)

A “whiteness” index is also calculated to accentuate clouds since
clouds look white and are highly reflective with relatively flat changes
in the visible band. By contrast, other land cover types show more
dramatic changes:

= + +( )/3Blue Green Red (12)

= =
=

Whiteness i Blue Green Red, ( , , )
i

i

1

3

(13)

In summary, there are a total of 17 (20) spectral features, including
7 (10) spectral channels of TOA reflectance and BT, and 10 common
spectral indices for Landsat 7 (8) images.

3.1.3. Model training and validation
RF can process large amounts of data efficiently and handle nu-

merous input variables without the need for data dimension reduction.
Moreover, it is not sensitive to multivariate collinearity variables, and
the results are relatively stable regardless of missing and unbalanced
data (Breiman, 2001; Wei et al., 2019a). Therefore, all the above-
mentioned spectral features of the data samples are calculated and used
as inputs to the RF model for model training to construct the classifi-
cation model of cloud detection for Landsat satellites.

RF also has the important advantage of not needing cross-validation
or a separate validation test because it can be evaluated internally, i.e.,
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an unbiased estimation of the error can be established during the
generation process. During the model training, about one-third of the
training samples (i.e., out-of-bag, or oob, samples) did not participate in
the generation of the decision tree in each round of bagging sampling
but were used to calculate the oob error, an unbiased estimation of the
GE* of the RF. This is similar to the k-fold cross-validation, a calcula-
tion-intensive procedure. The oob score (1 - oob error) is used to re-
present the generalization ability of the RF model. In the current study,
the oob scores of the RF models for Landsat 7 and 8 imagery reach up to
0.963 and 0.989, suggesting strong classification models. Therefore, the
constructed RF classification models are used to predict and generate
preliminary cloud masks for Landsat imagery. Fig. 2 shows the flow-
chart of the RF classification.

Furthermore, RF allows for the evaluation of the importance of each
feature during the classification, i.e., the importance score, calculated
using the Gini index (Calle and Urrea, 2011; Jiang et al., 2009; Wei
et al., 2020). Fig. 3 shows the importance score for each spectral feature
in RF classification for Landsat imagery. Results show that most spectral
features from the two different sensors play similar roles in detecting
clouds, where discrete spectral channels are important, especially for

thermal and shortwave bands. Due to the lack of some channels, the
important scores of the visible bands of Landsat 7 are higher than those
of Landsat 8. The cirrus band of Landsat 8 also plays an important role
in (cirrus) cloud detection, consistent with conclusions reported in
previous studies (Gao and Li, 2000, 2017; Gao et al., 2002; Shen et al.,
2015; Zhu et al., 2015). Furthermore, spectral indices still impact cloud
identification, especially those used to enhance bright surfaces (i.e.,
NDBI, TRnm, and NDSI), appearing to be more important than some
discrete spectral channels. However, “whiteness” is less important be-
cause it is mainly used to assist in identifying pixels that are not “white”
enough to be clouds in physical models (Gomez-Chova et al., 2007; Zhu
and Woodcock, 2012). These results illustrate that these spectral indices
are also important in tree-based ensemble learning approaches.

3.2. SEEDS segmentation

The RF clarification is performed on the pixel level, and did not
consider the spatial characteristics of clouds. Therefore, the object-
based SEEDS algorithm (Bergh et al., 2012) is selected to segment the
remote sensing image by superpixel here. It is based on the simple hill-
climbing optimization to extract superpixels, which starts with the in-
itial superpixel partition and continuously optimizes the superpixel by
modifying the boundary. The SEEDS superpixel segmentation mainly
includes the following four steps:

(1) The red, green, and blue channels of Landsat imagery are combined
into a red/green/blue (RGB) image and used as input to the SEEDS
algorithm;

(2) Initialize the superpixel (Seed is the center of the superpixel) at the
same interval (St), and all superpixels are rectangles of the same
size fitting the whole image;

(3) Select a pixel or a group of pixels (s) on the boundary and move
them from superpixel n to superpixel K. If the partitioning s ∈ S
maximizes the Energy function (E), E(s) > E(St), this pixel or a
group of pixels can be regarded as a part of the superpixels;

(4) Iterate step 3 until it converges (default upper limit of times), and St
is the final segmentation result.

In the SEEDS algorithm, E is expressed as

= +E s( ) H(s) G(s) (14)

Fig. 2. Flowchart of the Random Forest classification.

Fig. 3. Importance score of each spectral feature in cloud detection during the
RF classification for Landsat 7 and 8 imagery, where BT-1 and BT-2 represent
two brightness temperature bands for Landsat 8 satellite.
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where γ indicates the effect weight, and the term H(s) indicates the
color distribution of the superpixels, expressed as

= =c c jH(s) ( ) ( ( ))
k

A
k H

A
2

k
j

k
(15)

=c j
Z

( ) 1 (I(i) H )A
i A

jk
k (16)

where φ() denotes the quality measure of the color distribution, cAk(j)
denotes the color histogram of the superpixels (Ak) in the jth bin, Hj

denotes the colors in the jth bin of the histogram, I(i) denotes the color
of the ith pixel, Z denotes the normalization factor of the histogram, and
δ() is the indicator function. The term G(s) indicates the shape of the
superpixels and is expressed as

= b kG(s) ( ( ))
i k

N
2

i
(17)

=b k
Z

( ) 1 (j A )N
j N

ki
i (18)

where Ni represents the N × N pixels around the ith pixel, and bNi re-
presents the histogram of super-pixel labels in the Ni area.

3.3. Post-classification processing

The RF classification and SEEDS segmentation are worked parallel
to obtain the primarily cloud detection and image segmentation results,
respectively. Last, the post-classification processing is performed to
obtain the final result by overlying and combining these two results to
improve the overall accuracy of cloud detection for Landsat imagery.
For this purpose, the total number of cloudy and clear-sky pixels in
preliminary cloud results within each superpixel is counted, and then
the majority voting is used by adjusting to an appropriate decision
threshold to determine the final class of all pixels of each entire su-
perpixel. Fig. 4 illustrates a condensed flowchart of the RFmask cloud
detection algorithm for Landsat imagery developed in this study.

3.4. Evaluation approaches

Calculated are total cloud amount (CA) from both the cloud detec-
tion results and the validation masks for each Landsat image, and their

cloud amount difference (CAD; Sun et al., 2016a). The CA is over-
estimated when CAD > 0 and underestimated when CAD < 0. The
following metrics give a measure of the estimation uncertainty: the
regression line, the correlation coefficient (R2), the mean absolute error
(MAE), and the root-mean-square error (RMSE). The confusion matrix
is also used to evaluate the overall accuracy and estimation error of
RFmask cloud detection models for Landsat imagery based on six
commonly used statistical indicators, i.e., the Kappa coefficient (K;
Cohen, 1960), the overall accuracy (AO), the producer's accuracy (AP),
the user's accuracy (AU), the omission error (OE), and the commission
error (CE):

= +
+ + +

A TP TN
TP TN FP FNO (19)

=
+

A TP
TP FNP (20)

=
+

A TP
TP FPU (21)

=
+

OE FN
TP FN (22)

=
+

CE FP
FP TN (23)

where TP (true positive) and TN (true negative) denote the total
number of pixels correctly predicted, and FP (false positive) and FN
(false negative) denote the total number of pixels with an incorrect
outcome from the cloud and clear-sky recognition, respectively (Li
et al., 2019; Sun et al., 2016a).

4. Results

4.1. RFmask cloud detection results

4.1.1. RFmask results for Landsat 7 imagery
Fig. 5 illustrates four typical examples of standard-false-color (RGB:

Bands 4–3–2) composite images (left two panels in each group of four
panels) and binary RFmask cloud results (right two panels in each
group of four panels) for Landsat ETM+ satellite data over different
land surface types. To better compare the cloud detection results with
visual interpretations, full-scene, upper two panels in each group of

Fig. 4. Condensed flowchart of the RFmask cloud detection algorithm for Landsat imagery.
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four panels) and zoomed-in (lower two panels in each group of four
panels) images derived from the RFmask results are displayed. The
RFmask algorithm appears to more accurately identify most clouds in
the image that reveals a large amount of vegetation information
(Fig. 5a). The spatial distributions are almost identical between the
RFmask cloud detection results and color composite images. The
RFmask algorithm still works well as the amount of vegetation in-
formation decreases. For these vegetation-dominated land surface
types, e.g., forest (Fig. 5b), cropland (Fig. 5c), and mountains (Fig. 5d),
the RFmask algorithm performs well with small differences in cloud
spatial distributions compared with the color composite images. Fur-
thermore, the RFmask algorithm detects most clouds over those parts of
the images with little vegetation, especially inland water (Fig. 5a),
urban areas (Fig. 5c), and bare rock (Fig. 5b, d), suggesting acceptable
classification results (pointed by yellow arrows in Fig. 5).

4.1.2. RFmask results for Landsat 8 imagery
Fig. 6 shows the full-scene and zoomed-in standard-false-color

(RGB: Bands 5–4–3) composite images and RFmask results for Landsat 8
imagery. The RFmask cloud detection results are consistent with the
true cloud distributions seen in the remote sensing images over densely
vegetated areas (Fig. 6a-c). Clouds over darker surfaces, e.g., inland
water and offshore areas, can also be accurately identified (Fig. 6a-c).
The RFmask algorithm also performs well in coastline areas where
extreme bright-dark reflectance differences exist (yellow ellipse in

Fig. 6b). Clouds over urban buildings and roads are also more accu-
rately identified (Fig. 6c). For barren land with little vegetation cov-
erage, the RFmask algorithm still achieves better recognition results
with few missed or misjudged cases. Notably, clear skies are not mis-
identified as clouds by the RFmask algorithm over bright bare surfaces
deep inland (Fig. 6d). In general, the differences in cloud spatial dis-
tributions between RFmask results and color composite images are re-
latively small, and there are few incorrect or missing cloud identifica-
tion pixels, indicating good classification results (pointed by yellow
arrows in Fig. 6).

4.1.3. RFmask results over bright surfaces
Fig. 7 illustrates eight typical examples of the standard-false-color

composite images (left panels in each group of eight panels) and
RFmask results (right panels in each group of eight panels) for Landsat
imagery over diverse underlying surfaces containing most types of
bright surfaces. Bright surfaces have similar spectral characteristics as
clouds due to their high surface reflectance, especially in the visible and
NIR bands. This presents a challenge for traditional cloud detection
approaches because it is difficult to determine an appropriate threshold
(Irish et al., 2006; Oishi et al., 2018; Sun et al., 2016a; Zhu and
Woodcock, 2012). This can lead to the misidentification of bright sur-
faces as clouds and to difficulties in accurately detecting thin clouds.
The RFmask algorithm appears to be able to detect most clouds over
less vegetated areas (Fig. 7a), bare rocks (Fig. 7b), deserts (Fig. 7c), and

Fig. 5. Four examples of standard-false-color (RGB: Bands 4–3–2) composite images and cloud (masked as white) detection results for Landsat 7 full-scene and
zoomed-in images (areas outlined by yellow boxes) over diverse underlying surfaces, where the right two images in each group show identified clouds in white.
Yellow arrows point to clouds, and left- and right-side annotations indicate the acquisition times (yyyymmdd, where yyyy = year, mm=month, and dd = day) and
orbital records (path-row) of the Landsat 7 images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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plateau mountains (Fig. 7d), with few cloud omissions and false re-
cognitions, especially for thin and broken clouds (pointed by yellow
arrows in Fig. 7). Furthermore, the RFmask algorithm is also capable of
excluding very bright rocks (Fig. 7b, g), high-altitude snow/ice (Fig. 7d,
e), rich mineral (Fig. 7f), and Gobi or rocky deserts (Fig. 7h) from cloud
results. In particular, there is no misidentification of clouds over typical
bright surfaces in the cloud-free Landsat images (Fig. 7e-h, pointed by
red arrows in Fig. 7).

The RFmask algorithm is also tested for the most challenging scenes
over permanent snow/ice surfaces in the polar regions. Fig. 8 presents
the full-scene and zoomed-in false-color composite image scenes and
clouds identified. For the sake of visual interpretation and comparison,
the spectral Landsat data in MIR, NIR, and red channels are composited,
which can better differentiate snow/ice from cloudy scenes. The
RFmask algorithm can detect thick clouds more accurately, and most
broken clouds (Fig. 8a, b, d). Moreover, it also works well in identifying
thin clouds covering a large area as pointed by the yellow arrows
(Fig. 8a-c). In addition, it can also differentiate bright sea ice and off-
shore reefs from clouds as pointed by the red arrows (Fig. 8d). Never-
theless, there are a considerable number of cloudy pixels misidentified
or missed.

4.2. Accuracy assessment and analysis

4.2.1. Overall performance evaluation
Section 4.1 qualitatively examines the cloud detection results based

on visual interpretations. Here, Landsat 7 Irish and Landsat 8 Biome

validation data are selected to quantitatively evaluate the RFmask re-
sults. Table 2 summarizes the comparison between RFmask-derived
cloud amount against USGS validation mask-determined cloud amount
for all Landsat images, and Landsat 7 and 8 images, respectively. The
estimated percentages of cloud cover are consistent with the USGS
manually determined percentages of cloud cover (R2 = 0.97) with a
slope of 0.98, a y-intercept of 0.55, and a mean bias of −0.09, and the
average MAE and RMSE values are 3.54% and 6.27% for Landsat
imagery, respectively. More importantly, even when considering
manual estimation uncertainties, approximately 90% of the RFmask
results differ from the reference results by less than 5%. Similar vali-
dations and comparisons were also made separately for Landsat 7 and 8
images. The estimated cloud cover percentages derived from the
RFmask algorithm and the USGS reference database correlate well
(R2 = 0.97 and 0.96 for Landsat 7 and 8, respectively), with strong
slopes close to 1 and small intercepts. The MAEs are 3.03% and 4.64%,
and RMSEs are 5.06% and 8.31% for Landsat 7 and 8 imagery, re-
spectively. This suggests that the RFmask algorithm can estimate more
accurately the percentage of clouds per scene, an important part of
Landsat data prescreening.

Fig. 9 shows the frequency histograms of six accuracy indicators
calculated from the confusion matrix for all Landsat RFmask results.
The K for the RFmask algorithm is 0.77, and the average AO reaches up
to 93.8%. More than 79% and 72% of the RFmask results for Landsat
imagery have AO and K greater than 90% and 0.7, respectively. The
average AP and AU are 88.0% and 89.1%, and in general, approximately
82% and 89% of the RFmask results have AP and AU values greater than

Fig. 6. Same as Fig. 5 but showing Landsat 8 imagery, while the left two images in each group are composited of bands 5, 4, and 3.
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80%, respectively. The average OE and CE are 12.0% and 7.4%, and
more than 70% and 76% of the RFmask results have OE values< 15%
and CE values< 10%, respectively. The RFmask algorithm also works
well with Landsat 7 imagery with average K, AO, AP, and AU values of
0.80, 93.9%, 88.1%, and 89.1%, respectively (Table 2), and small es-
timation errors, i.e., OE = 11.9% and CE = 6.8%. For Landsat 8
imagery, i.e., K = 0.72, AO = 93.7%, AP = 87.6%, and AU = 89.0%,
with an OE of 12.4% and CE of 8.8%. These results suggest that the
RFmask algorithm can be applied to images from different Landsat
satellites to detect clouds.

4.2.2. Evaluation on different land-use types
Next validated is the performance of the RFmask algorithm over

different land-use types for Landsat imagery (Table 3). Results suggest
that the RFmask algorithm performs well in detecting clouds over most
dark surfaces, with overall high Kappa coefficients> 0.73, high overall
accuracies> 92% and small commission errors< 9%, especially wet-
lands (e.g., Kappa = 0.80, AO = 96.9%, OE = 9.7% and CE = 4.9%)
and shrubland (e.g., Kappa = 0.79, AO = 96.5%, OE = 9.4% and
CE = 5.2%). The main reason is that there are noticeable spectral
differences between clouds and these land-use types with low surface
reflectances, which are relatively easy to distinguish, leading to fewer
cloud recognition errors. The RFmask algorithm also shows a good
ability in identifying clouds over urban areas (e.g., Kappa = 0.82,

AO = 96.1%, OE = 10.6% and CE = 3.8%) because they are mainly
scattered near dark surfaces such as natural vegetation areas.

However, the performance of the RFmask algorithm overall de-
creases over brighter surfaces (e.g., Kappa < 0.7), due to the sig-
nificant reduction in spectral differences, making clouds easier to be
missed (OE > 10%) or misidentified (CE > 10%). For snow/ice
surfaces, the overall accuracy of the RFmask algorithm is about 88%.
Bright snow/ice pixels are more likely misidentified as clouds, leading
to larger commission errors of approximately 21% (Table 3). This has
long been recognized as a major challenge in cloud identification due to
similar spectral characteristics in both visible and infrared channels,
except some differences in near-IR and mid-IR regions (Li and Leighton,
1991). Given the inherent limitation of the Landsat spectral signals, the
identification accuracy is reasonably high, especially in comparison
with others (Chai et al., 2019; Li et al., 2019; Wieland et al., 2019), as
the majority of clouds are identified for both extensive cloud decks, as
well as for broken cloud cells. It is also worth noting that the manual
visual interpretation is also subject to larger uncertainties, that may
undermine our training and validation.

In general, the thick clouds are easy to be correctly identified over
all types of land surfaces because thick clouds have strong signals.
However, thin and broken clouds are irregular in shape and lesser in
amount, usually occupying only a few pixels or even sub-pixels, and
cirrus can be widespread with varying optical depths. Thus due to the

Fig. 7. Eight examples of standard-false-color composite images and cloud (masked as white) detection results for Landsat 7 and 8 zoomed-in images over diverse
underlying surfaces. Yellow and red arrows point to clouds and bright surfaces, respectively. Left- and right-side annotations indicate the acquisition times
(yyyymmdd, where yyyy = year, mm=month, and dd = day) and orbital records (path-row) of the Landsat images. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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influence of mixed pixels formed by clouds and different underlying
surfaces, traditional threshold-based methods have difficulty setting up
accurate thresholds and always fail to identify these clouds from
Landsat images, especially over bright surfaces (Goodwin et al., 2013;
Jin et al., 2013; Oishi et al., 2018; Sun et al., 2018; Zhu and Woodcock,
2012). These results illustrate that our new RFmask algorithm is robust
and can more accurately identify most clouds over complex and
changeable underlying surfaces with few omission and commission
errors, especially over bright surfaces. This is mainly due to the com-
prehensive inclusion of diverse mixed surfaces in the RFmask

algorithm. Mixed cloudy- and clear-sky pixels are fully trained to learn
and master their spectral characteristics and differences, so constructed
are millions of decision trees to improve the overall cloud detection
accuracy in Landsat images, especially for broken and thin clouds.

5. Discussion

5.1. Importance of superpixel segmentation

Fig. 10 compares one cloud detection result using the SEEDS seg-
mentation and one without the segmentation for Landsat imagery.
Without the SEEDS segmentation (Fig.10b), there are many scattered
pixels in cloudless places on the left and in the upper right corner of the
image in the classification results, wrongly identified as cloud pixels
(areas outlined by yellow circles), resulting in a lot of “salt-and-pepper”
noise. There are also many pixels in the cloud layer that are incorrectly
identified as clear-sky pixels (areas outlined by red circles). The main
reason is that RF classification is performed at the pixel level, where
spatial autocorrelations and spatial texture information among the
pixels are not considered, leading to inevitable noise in the classifica-
tion results. However, superpixel segmentation is object-oriented and
selected to address these issues. With the SEEDS segmentation
(Fig.10c), the noise is removed, and patchy clouds are completely filled.
In general, the final result appears to be more consistent in cloud dis-
tribution with the true-color Landsat image compared to the pre-
liminary result via the visual interpretation (Fig. 10a). However, it

Fig. 8. Same as Fig. 5 but for snow/ice surfaces in the polar regions, while the left two images in each group are composited of bands 5, 4, and 3 for Landsat 7, and
bands 6, 5, and 4 for Landsat 8, respectively.

Table 2
Statistics describing the evaluation results of cloud detection amount and ac-
curacy for all images, and Landsat 7 and 8 imagery separately.

Cloud
amount

N R2 Regression line MAE (%) RMSE (%) CAD (%)

Slope Intercept

All 202 0.97 0.98 0.55 3.54 6.27 −0.09
Landsat 7 138 0.97 0.99 0.06 3.03 5.06 −0.19
Landsat 8 64 0.96 0.97 1.81 4.64 8.31 0.14

Accuracy N Kappa AO (%) AP (%) AU (%) OE (%) CE (%)

All 202 0.77 93.8 88.0 89.1 12.0 7.4
Landsat 7 138 0.80 93.9 88.1 89.1 11.9 6.8
Landsat 8 64 0.72 93.7 87.6 89.0 12.4 8.8
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should be noted that some small clouds containing a small number of
pixels can also be excluded from the final result due to the defined
decision threshold in merging the RF identification and image seg-
mentation results in each superpixel during the post-classification
processing. Nevertheless, it has little impact, and the quantitative
comparison results show that after superpixel segmentation, all the
accuracy evaluation metrics have been overall improved, and the
omission and commission errors have been overall reduced for the final
results with reference to the preliminary results. This suggests that the
object-oriented SEEDS segmentation technology plays an important
role in pixel-based classification by post-processing the preliminary
cloud detection results, which benefited in improving the overall ac-
curacy of cloud detection.

Fig. 9. Frequency histograms of RFmask cloud results from Landsat images in terms of (a) the Kappa coefficient, (b) the overall accuracy, (c) the producer's accuracy,
(d) the user's accuracy, (e) the omission error, and (f) the commission error.

Table 3
Accuracy and error statistics of the RFmask algorithm in cloud detection over
diverse land-use types for Landsat imagery.

Land-use type Kappa AO (%) AP (%) AU (%) OE (%) CE (%)

Water 0.76 92.7 85.7 89.1 14.3 8.3
Forest 0.75 92.9 87.4 92.6 12.6 5.2
Shrubland 0.79 96.5 90.6 85.5 9.4 5.2
Grass 0.73 93.3 85.4 89.4 14.6 6.6
Wetlands 0.80 96.9 90.3 94.9 9.7 4.9
Crops 0.83 96.9 87.3 86.7 12.7 2.6
Urban 0.82 96.1 89.4 93.0 10.6 3.8
Barren 0.69 92.9 87.2 83.7 12.8 11.6
Snow/ice 0.67 87.6 89.7 79.4 10.3 20.9

Fig. 10. An example of (a) a zoomed-in RGB combined image, (b) the preliminary cloud detection result without the SEEDS segmentation, and (c) the final cloud
detection using the SEEDS segmentation for Landsat imagery.
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5.2. Comparison with related cloud studies

Here, we perform a simple comparison with existing cloud detection
algorithms using the same validation sources of L7 Irish and L8 Biome
reference masks (Table 4). Note that the reference images used are not
totally the same, which could make the accuracy comparison not par-
ticularly fair. The result shows that the RFmask algorithm appears to
outperform some traditional threshold-based models, e.g., the Fmask
algorithm (Li et al., 2019; Zhu et al., 2015), the ACCA, Artificial
Thermal (AT)-ACCA and Fixed Temperature (FT)-ACCA algorithms, the
C implementation of Function of Mask (CFmask) algorithm, the Landsat
8 Surface Reflectance Code (LaSRC) algorithm (Chai et al., 2019; Foga
et al., 2017), and the CDAL8 algorithm (Oishi et al., 2018). The RFmask
algorithm also shows a comparable performance with recently devel-
oped machining learning algorithms, e.g., and the See5 algorithm (Foga
et al., 2017) or deep learning algorithms, e.g., SegNet (Chai et al.,
2019), MSCFF, DeepLab, and Deep Convolutional Network (DCN) (Li
et al., 2019). In general, although the performance of our RFmask al-
gorithm is not superior to some previous studies in all aspects, it is new,
rapid, and automatic for cloud detection of Landsat imagery, especially
in comparison to the time-consuming deep learning approaches.

6. Summary and conclusions

There are currently many operational algorithms for Landsat sa-
tellites. However, due to the high spatial resolution and the smaller
amount of spectral information from instruments onboard the Landsat
satellites, traditional threshold-based methods still face great chal-
lenges in detecting broken and thin clouds, especially over bright sur-
faces. Therefore, in this study, we propose a new Random-Forest-based
cloud mask (RFmask) algorithm, which combines the pixel-based RF
ensemble learning approach and object-oriented Super-pixels Extracted
via Energy-Driven Sampling (SEEDS) segmentation technology, for
high-resolution imagery from the Landsat series of satellites. For this
purpose, stratified were cloudy- and clear-sky pixels over diverse un-
derlying surfaces collected from uniformly distributed Landsat images
around the world, and a prior-pixel database was constructed. Then
derived were a variety of spectral features for distinguishing clouds
from different land cover types as inputs for model training and
building. Preliminary cloud detection results are further processed

using superpixel segmentation and validated against USGS Landsat 7
and 8 cloud-cover assessment datasets.

Validation and comparison results show that the RFmask algorithm
can accurately detect most clouds over diverse land surface types. The
new algorithm works well in identifying broken clouds and thin clouds
with few omissions. It can also more correctly distinguish most clouds
from bright surfaces (e.g., urban, barren, and snow/ice) with few mis-
judgments. In general, the estimated cloud covers correlate well with
the validation cloud masks (R2 = 0.97), showing small estimation
uncertainties (i.e., MAE = 3.54% and RMSE = 6.27%). The RFmask
algorithm detects clouds well with an overall accuracy of 93.8%, a
small omission error of 12.0%, and a commission error of 7.4%. The
RFmask algorithm appears to outperform traditional threshold-based
methods and be comparable to deep learning approaches presented in
previous studies. This illustrates that the RFmask algorithm is robust
and can significantly improve the detection of thin and broken clouds,
which is of great importance for quantitative applications in the surface
and atmospheric fields for Landsat missions.

Although the RFmask algorithm can achieve a high accuracy in
cloud detection, there are still some deficiencies that need to be further
explored. The separation of snow/ice from clouds is still a difficult task
which warrants further investigations, and so is another challenging
task of detecting cloud shadow. Due to the difficulty in the model re-
constructing, a more comprehensive comparison of model accuracy and
operating efficiency between our and previously developed algorithms
will be considered in a future study. In addition, due to the lack of
validation data for different types of clouds, comparisons of the per-
formance among different algorithms are not feasible at present. Last,
the RFmask algorithm will also be applied to other high-spatial-re-
solution sensors in future studies.
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Table 4
Comparison of cloud detection algorithm accuracies (unit: %) from previous studies and this study using the same L7 Irish and L8 Biome reference masks.

Study Algorithm AO (%) AP (%) AU (%) OE (%) CE (%) Satellite Reference

1 Fmask 90.7 84.4 99.8 – – Landsat 7 Zhu et al., 2015
93.3 95.0 97.0 – – Landsat 8

2 ACCA 83.8 – – 6.66 5.9 Landsat 7–8 Foga et al., 2017
AT-ACCA 87.5 – – 12.4 9.8
FT-ACCA 74.2 – – 8.07 3.8
CFmask 89.3 – – 2.7 12.0
LaSRC 73.1 – – 4.7 23.9
See5 85.8 – – 14.8 5.7

3 CDAL8 88.8 – – 13.0 17.6 Landsat 8 Oishi et al., 2018
4 SegNet 94.3 86.5 91.3 – – Landsat 7 Chai et al., 2019

94.0 93.1 94.5 – – Landsat 8
CFmask 89.9 83.6 83.2 Landsat 7

84.6 82.7 74.3 Landsat 8
5 MSCFF 94.5 93.6 92.5 – – Landsat 7 Li et al., 2019

95.0 95.1 93.9 – – Landsat 8
Fmask 91.7 89.7 89.8 Landsat 7

89.6 85.8 93.0 Landsat 8
DeepLab 90.2 88.3 87.3 Landsat 7

87.7 91.3 81.4 Landsat 8
DCN 92.2 93.9 86.2 Landsat 7

92.4 95.6 87.3 Landsat 8
6 RFmask 93.9 88.1 89.1 11.9 6.8 Landsat 7 This study

93.7 87.6 89.0 12.4 8.8 Landsat 8
93.8 88.0 89.1 12.0 7.4 Landsat 7–8
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