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Table S1. Summary of the data sources used in this study. 

Variable Description Unit 
Spatial  
Resolution 

Temporal 
Resolution 

Data Source 

MOD02SSH Radiance 
W m-2 µm-1 
sr-1 

5 km Daily 

LAADS DAAC 
(https://ladsweb. 
modaps.eosdis. 
nasa.gov/) 

MOD09 Surface reflectance - 0.05°×0.05° Daily 

MOD13 
Normalized difference 
vegetation index 

- 0.05°×0.05° 16-Day 

MOD11 Land surface temperature K 1000 m Daily 

MCD12 Landcover 
Land cover 
type 

500 m Annual 

GEOS-CF 

On-going 5-day forecasts 
of PM2.5 

µm m-3 
0.3°×0.25° 3-Hour 

GMAO (https://gmao. 
gsfc.nasa.gov/) On-going 5-day forecasts 

of Ozone 
µm m-3 

RH Relative humidity % 

 Hourly 
National Climatic Data 
Center (https://www. 
ncdc.noaa.gov/) 

T2M 2-m air temperature K 

WS Wind speed m s-1 
BLH Boundary layer height m 

Visibility 
Visibility data observed 
from meteorological 
stations 

m    

PM2.5 Ground-based PM2.5 µm m-3 
 Hourly 

CNEMC 
(http://www.cnemc.cn)  O3 Ground-based O3 µm m-3 

https://link.springer.com/article/10.1007/s40747-021-00527-2
https://www.bing.com/ck/a?!&&p=91e97c47c0114718JmltdHM9MTY1ODMwODI4NCZpZ3VpZD1iZGE2N2RlNS1iN2I4LTRjM2QtODJlYi0xMmQ5YmEyNDQxMTYmaW5zaWQ9NTE2MA&ptn=3&hsh=3&fclid=ed50d75a-080b-11ed-87ca-fdca3a106e77&u=a1aHR0cHM6Ly93d3cuZWFydGhkYXRhLm5hc2EuZ292L2Vvc2Rpcy9kYWFjcy9sYWFkcw&ntb=1


 
Table S2. Summary of the input Variables in SOPiNet. 

 

 

 

 

 

 

 

 

 

Variable Class Name Detail Description 

Continuous variables 

Satellite Data 

B1-B12, 
B17-B36 

Band 1-36, solar and satellite zenith angle, 
and azimuth angles 

B1-B7 Surface reflectance 

NDVI Normalized difference vegetation index 

LST Land surface temperature 

Global Modeling and 
Assimilation 

GEOS-PM2.5 Real-time PM2.5 concentration 

GEOS-O3 Real-time O3 concentration 

Ground-based 
measurement data    

Past-PM2.5 PM2.5 in the past 20 days 

Past-O3 O3 in the past 20 days 

BLH Boundary layer height 

T2M 2-m air temperature 

WS Wind speed 

RH Relative humidity 

Categorical variables  

LC Land cover 

Prov Province region 

Month  

Season  

P-M Province-month pairwise feature 



Table S3. The class types and their abbreviations of land use type in Figure S2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Value Land use type 

1 Evergreen Needleleaf Forests 
2 Evergreen Broadleaf Forests 
3 Deciduous Needleleaf Forests 
4 Deciduous Broadleaf Forests 
5 Mixed Forests 
6 Closed Shrublands 
7 Open Shrublands 
8 Woody Savannas 
9 Savannas 
10 Grasslands 
11 Permanent Wetlands 
12 Croplands 
13 Urban and Built-up Lands 
14 Cropland/Natural Vegetation Mosaics 
15 Permanent Snow and Ice 
16 Barren 
17 Water Bodies 



Table S4. The class types and their abbreviations of province in Figure S2. 

Value Province Value Province 

1 Zhejiang 18 Hubei 
2 Yunnan 19 Heilongjiang 
3 Xinjiang 20 Henan 
4 Xianggang 21 Beijing 
5 Xizang 22 Tianjin 
6 Taiwan 23 Hainan 
7 Sichuan 24 Guizhou 
8 Shaanxi 25 Guangxi 
9 Shanxi 26 Gansu 
10 Shandong 27 Fujian 
11 Qinghai 28 Aomen 
12 Ningxia 29 Anhui 
13 NeiMongol 30 Shanghai 
14 Liaoning 31 Chongqing 
15 Jiangxi 32 Jiangsu 
16 Jilin 33 Guangdong 
17 Hunan 34 Hebei 

    
 
 
 



Table S5. Previous studies in China. We only use the time-based validation method result for comparison. 

 Cooperative 
inversion 

Full 
coverage 

Model 
Spatial 

resolution 
Validation method R2 

RMSE(µg/m3

) 
Literature 

PM2.5 

no no STET 1 km train:2018 test:2017 0.65 - Wei et al.(2020)1 
no no JFRF 5 km train:2018 test:2019 0.70 18.39 Dong et al.(2022)2 

no no EntityDenseNet 5 km 
train:2016-2018 

test:2019 
0.65 25.30 Yan et al.(2020)3 

no no SIDLM 3 km 
train:2016-2018 

test:2019 
0.70 15.30 Yan et al.(2021)4 

no yes TAP PM2.5 10 km Time-based CV 0.58 27.50 Geng et al.(2022)5 
no yes NSTC model 1 km Time-based CV 0.62 27.70 Huang et al.(2022)6 

no yes ML-CMAQ 10 km 
train:2013-2016 
test:2017-2019 

0.62 27.80 Xue et al.(2019)7 

yes yes SOPiNet 5 km 
train:2019-2021 

test:2022 
0.72 16.45 This study 

O3 

no no Semi-SIDLM 5 km 
train:2016-2018  

test:2019 
0.71 21.88 Yan et al.(2021)8 

no no ExDLM 5km Time-based CV 0.78 18.35 Luo et al.(2022)9 
no no XGBoost 10 km Time based CV 0.78 21.47 Liu et al(2020)10 

no no SGLboost 2km 
train:2017-2018  

test:2019 
0.72 25.11 Wang et al.(2022)11 

yes yes SOPiNet 5km 
train:2019-2021  

test:2022 
0.82 12.60 This study 



 
Table S6. The training and inference time  

Model Training (each 
epoch) 

Inference 
time 

 

SOPiNet (PM2.5+O3) 89±3 s 17±2 s  
Single Modeling (PM2.5) + Single 

Modeling (O3) 138±7 s 25±2 s  

 per epoch (mean ± std. dev. of 100 epoch)  

 

 

 

 

 

Figure S1. (a) CNEMC air quality monitors in China. (b) Spatial distribution of the 

meteorological stations. (c) The Integrated Global Radiosonde Archive sites in China. 

 

 



 

Figure S2. Spatial distribution of the geographical variables used in this study. The 

detailed descriptions for their legend are in Tables S2-S3. 

 



 
Figure S3. Spatial distribution of the meteorological variables during 2019-2022. 

 

 

 

 



 

Figure S4. Spatial distribution of the sites with missing data in three intervals. The 

detailed descriptions for their information can be found in Table S4. 

 

 

 

Figure S5. The RMSE validation of SOPiNet and single modeling for different levels 

of missing data. 

 



 
Figure S6. Evaluation of ARIMA model of PM2.5 (a) and O3 (b). (c-f) ACF and PACF 

plots to determine the p and q parameters in the ARIMA model. 

 

 

Optimization of the number of past days’ information for PM2.5 and O3 

Information about O3 and PM2.5 from previous days is crucial for the estimation 

of real-time O3 and PM2.5 by the developed SOPiNet. As seen in Figures S7 a and b, 

the linear correlation coefficients between current PM2.5 or O3 concentrations with their 

past values range from 0.66 to 0.39 and 0.78 to 0.55, respectively. However, the 

correlation coefficient cannot directly aid in the inference of the optimal number of past 

time periods to include for PM2.5 and O3 due to autocorrelations between nearby days. 

Here, we used the Autoregressive Integrated Moving Average (ARIMA) model to 



determine the number of past days to use as input to SOPiNet. The model is expressed 

as ARIMA(p, d, q), where the parameters p, d, and q determine the structure of the 

model, which is a combination of auto-regression AR(p), moving average MA(q), and 

differencing degree d. The mathematical formula for the ARIMA(p, d, q) model can be 

expressed as follows: 

1 1
1 (1 ) 1

p q
i d i

i t i t
i i

L L X Lφ θ ε
= =

   −∑ − = + ∑   
   

 (12) 

where L is the lag operator, iφ   is the parameter for the auto-regressive part of the 

model, iθ  is the parameter for the moving average part, and iε denotes error terms. 

To determine the optimum number of input days, we fitted ARIMA models to the 

PM2.5 and O3 concentrations in 2019–2020 using a varying number of past days in the 

models, and validated the results during 2021. We used a first degree of differencing to 

construct stationary time series and determined the optimal parameter values for p and 

q based on the Akaike Information Criterion using the Auto-ARIMA function (the 

detailed can be found in Supplementary information-Determine the parameter for 

ARIMA model, Figure S8). Figures S7c and d present the correlation coefficient (R) 

and root-mean-square error (RMSE) average values of each ARIMA-based PM2.5 and 

O3 modeling results for different numbers of past days as input. The red dots in the 

graph indicate the R of the modeling results relative to the number of past days and the 

box line diagram shows the corresponding RMSE. For O3, the results show a clear peak 

in R when using the past 20 days as input, with R being 0.73 and RSME being 12.19 

µg/m3. As for PM2.5, when including information on the past 20 days, R is 0.60 and 

RMSE is 21.82 µg/m3. Therefore, based on these results, we chose to use 20 days of 



information as inputs for the SOPiNet real-time O3 and PM2.5 retrievals. 

 

Figure S7. (a-b) Pearson correlation coefficient (R) between PM2.5 (a) and O3 (b) at the 

current time with values from the past 10 days. (c-d) Validation of predicted PM2.5 and 

O3 from the ARIMA model using different numbers of past days as training data. The 

red dots above show the correlations between the predicted and the measured PM2.5 and 

O3 concentrations. The blue dashed line shows the fitted results and the shading 

indicates half of the standard deviation. The box plots below show the root-mean-square 

error (RMSE) values for the predicted results. The dashed boxes highlight the results 

when using 20 days of training data, with the corresponding R (RMSE) values shown 

below (above) the boxes. 

 

 

 

 



Determine the parameter for ARIMA model 

To find the optimum number of input days, we tested a range of ARIMA models 

fitted using a varying number of past days from 2 to 30 days in intervals of 2 days. We 

constructed a sliding scale prediction based on the common ARIMA model. For 

example, when input steps is 30, we entered the ground observations from the last thirty 

days as training data and slide the prediction until all the data in the test datasets are 

defined (see Figure S7). For each ARIMA model, we automatically selected the optimal 

parameters using the auto-ARIMA package (https://github.com/alkaline-ml/pmdarima). 

There are three steps to determine the parameters12-13. To make the datasets stationary, 

the first step is differencing the time series. In this package, the number of differences 

d is determined using repeated KPSS tests. The values of p and q were then chosen by 

minimizing the AIC after differencing the data d times by a stepwise search to traverse 

the model space. Finally, the model with the smallest AIC value is chosen. To ensure 

that our data were usable with the ARIMA model, we first performed a manual test and 

determined the parameters using the partial autocorrelation function (PACF) for p and 

autocorrelation function (ACF) for q. The manual tests were consistent with the auto-

ARIMA results.  

https://github.com/alkaline-ml/pmdarima


 

Figure S8. ARIMA flow chart of how to find the optimum number of input days. 

 



 

Figure S9. (a, c) Performance of SOPiNet real-time monitoring results in 2022. The 

lines represent the SOPiNet estimated daily mean, and the shadings show the 

plus/minus one standard deviation. Whiskers on dots are the daily observed value 

plus/minus one standard deviation. (b, d) Accuracy of SOPiNet alerts of PM2.5 and O3 

in heavily polluted conditions (>100 µg/m3), respectively. (e-j) Comparison of SOPiNet 

with GEOS-CF results in two cases. (e) and (h) show the in situ concentration 

measurements; (f) and (i) the SOPiNet retrievals; and (g) and (j) the GEOS-CF forecast 

values.  
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