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Section 1

Evaluation metrics

To assess the performance of our model, the following metrics were used: the 

Pearson correlation coefficient (R), the root-mean-square error (RMSE), and the mean 

absolute error (MAE), Normalized Root Mean Square Error (NRMSE) formulated as
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For the fAOD, we adopted the relative error envelope (EE) to determine if an 

fAOD retrieval is accurate. Initially proposed by Kaufman[EE (0.05 + 0.15×AOD)] to 

AOD, this metric aims to measure the interval range of all absolute and relative errors 

of aerosol indices1. Results falling within this interval range are considered to be within 

the allowable error range, while those falling above or below the range are typically 

indicative of overestimation or underestimation, respectively. Our focus is on high-

precision applications where minimizing systematic errors is critical. hence, a lower 

fixed offset (such as 0.03) may be preferred.  Additionally, considering fine aerosol 

optical depth (fAOD) values tend to be smaller than those of total aerosol optical depth 

(AOD), a proportional scaling factor of 0.1 might be more appropriate for capturing the 

relative variability in errors across the range of fAOD values.  This choice ensures that 
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the EE formula adequately accounts for the inherent uncertainties in fine aerosol 

retrievals, particularly in scenarios where the absolute magnitude of fAOD values is 

relatively lower compared to AOD values.

Section 2

CLAUDIA -3 Cloud Mask Algorithm

Our study utilizes the official cloud product algorithm of GOSAT-2, known as the 

Cloud and Aerosol Unbiased Decision Intellectual Algorithm 3(CLAUDIA-3), 

developed by Yu Oishi et al2. This algorithm employs a Support Vector Machine (SVM) 

method to optimize the threshold between cloudy and clear skies, enabling automatic 

threshold adjustment. Comparative validation has shown that its results are comparable 

in accuracy to the MODIS C6.1 cloud mask algorithm and the cloud data provided by 

the Atmospheric Radiation Measurement Climate Database, demonstrating good 

consistency. CLAUDIA-3 is effective in identifying both thick and thin cloud3. 

Therefore, this study adopts the CLAUDIA-3 cloud mask method to enhance the quality 

of subsequent data and the reliability of the results.

Section 3

Ångström exponent interpolation

To ensure fAOD wavelength consistency in our study, we employed the Ångström 

exponent interpolation method to convert AERONET AOD measurements at 500nm to 

550nm.The Ångström exponent interpolation method is a common approach to convert 

fAOD from one wavelength to another. The Ångström exponent characterizes the 

relationship between aerosol particle size distribution and optical properties. Its 

calculation is based on the formula(2):
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which fAOD1 and fAOD2 are the fAOD values at wavelengths λ1 and λ2 

respectively and α is Ångström exponent of fAOD. To interpolate fAOD from 500nm 

to 550nm, known fAOD values at 500nm and Ångström exponent of fAOD from in-

situ measurement. Subsequently, utilizing this exponent and the fAOD value at the 

target wavelength, interpolation is performed using the formula(3):
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which λ1 and λ2 represent the wavelengths at 500nm and 550nm respectively, 

fAOD1 and fAOD2 represent the fine-mode aerosol optical depth at wavelengths 500nm 

and 550nm respectively, and α represents the Ångström wavelength exponent.

Section 4 

Model input variable

In our model inputs, we included raw satellite band data and other satellite-derived 

variables. As shown in Table S5, the raw data consist of ten band data from both 

forward and backward satellite bands, as well as two angular data points: satellite zenith 

angle and solar zenith angle. These angles mainly describe the geometric relationship 

between the satellite observations and the sun's position. The derived variables include 

the scattering angle (SA), and the monthly minimum and difference values for each 

band. The scattering angle (SA) is a key angle that measures the scattering process of 

sunlight in the atmosphere, reflecting the spatial scattering angle between the sunlight 

and the observation point. SA is often used in the atmospheric radiation transfer 

equation to solve for AOD and its parameter information and is commonly applied in 
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the physical calculations of Rayleigh scattering in atmospheric aerosols4,5. The monthly 

minimum value of each band is approximated to represent the minimum surface 

reflectance for the month, while the difference value in the model represents the 

contribution of atmospheric aerosols. Additionally, we provided categorical 

information such as month and season to the our model.
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Table S1. Main characteristics of the GOSAT-2 spacecraft.

                                 Name                        Parameters

Orbit type sun synchronous

Altitude 613 km 

Repeat cycle 6 days
Satellite 

parameters

Local equator crossing time in the descending 
node

13:00 ± 0:15 
(UTC)

Table S2. Main characteristics of the GOSAT-2/CAI-2.

Band
Spectral

 Range (nm)
Central Band 

(nm)

Spatial Resolution

（m）
Tilt Swath (km)

1 333–353 339 460
2 433–453 441 460
3 664– 684 672 460
4 859–879 865 460
5 1585–1675 1630 920

20°

(Forward 
direction)

6 370–390 377 460
7 540–560 546 460
8 664–684 672 460
9 859–879 865 460
10 1585–1675 1630 920

-20°

(backward
direction)

920
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Table S3. The definition of different products for fAOD

Measurement Parameter
Particle size definition (rp 

=particle radius)
Source

MODIS fAOD 0.1um < rp < 0.25 um (Kaufman et al.,6 2005)

MISR fAOD rp < 0.35 um (Kahn et al.7, 2015)

VIIRS fAOD 0.1um < rp < 0.25 um (Li et al.,8 2022)

Table S4. SURFRAD sites used for independent validation and their locations.

Site Name Longitude (oW) Latitude (oN)

Bondville, Illinois (BON) 88.37 40.05

Fort Peck, Montana (FPK) 105.10 48.31

Goodwin Creek, Mississippi (GWN) 89.87 34.25

Penn. State Univ., Pennsylvania (PSU) 77.93 40.72

Sioux Falls, South Dakota (SXF)

Table Mountain, Boulder, Colorado (TBL)

Desert Rock, Nevada (DRA)

96.62

105.24

36.62

43.73

40.12

116.01
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Table S5. Summary of our model’s input variables.
Variable Class Name Detailed Description

B1 - B5 Bands 1 to 5 of the satellite at forward viewingSatellite 
Raw 
Variables

B6 - B10 Bands 6 to 10 of the satellite at backward viewing

M1 - M5
Minimum monthly value for each band at forward 
viewing

M6 - M10
Minimum monthly value for each band at backward 
viewing

B_M(1-5)
Raw value minus monthly minimum for each band at 
forward viewing

B_M(6-10)
Raw value minus monthly minimum for each band at 
backward viewing

NDVI_F
Normalized difference vegetation index at forward 
viewing

Satellite 
Derived 
Variables

NDVI_B
Normalized difference vegetation index at backward 
viewing

SolZ_F Solar zenith angle at forward viewing
SenZ_F Satellite zenith angle at forward viewing
SCA_F Scattering angle at forward viewing
SolZ_B Solar zenith angle at forward viewing
SenZ_B Satellite zenith angle at forward viewing

Continuous 
variables

Satellite 
Angle 
Variables  

SCA_B Scattering angle at backward viewing

MonthCategorical 
variables Season
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Table S6. Hyperparameters of the model settings. 

Short Name Configuration Detailed Description

batch_size 256 The number of data samples captured in one training step

d_model 256 The number of hidden-layer nodes in each layer

n_tf_head 4
The number of attention heads used in the multi-head attention 
encoder layer

n_tf_layer 2 The number of transformer encoder layers

p_tf_drop 0.1
The percentage of neurons temporarily removed from the  
transformer encoder layers

n_mlp_layer 1 The number of multilayer perceptrons (MLP)

p_mlp_drop 0.1
The percent of neurons temporarily removed from the MLP 
layers

lr 0.0005 Learning rate

max_epochs 2000 The maximum number of epochs to train for the model
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Figure S1. (a) Locations of AERONET stations (red dots) and SURFRAD stations 

(blue dots; see Table S3 for the names of these stations) across the contiguous United 

States. The black borders in the figure encircle the adjacent areas of AERONET and 

SURFRAD stations, respectively. (b-c) The spatial zoom-in of the selected area in 

Figure S1a. (d) Daily mean fAOD values of AERONET (red dotted line) and 

SURFRAD (blue line) within the TBL area range. Scatter density plots for both are 

shown in the top left corner of the figure.(e) same with figureS1c, but in SXF area.
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Figure S2. (a) Density scatterplots of ADLM fAOD estimates against AERONET 

fAOD retrievals. The red dashed line is the best-fit line from linear regression, and the 

black solid line is the 1:1 line. Black dashed lines outline the error envelope, EE [EE ± 

(0.03+10%)]. The number of samples (N), relation from linear regression, correlation 

coefficient (R), root-mean-square-error (RMSE), normalized RMSE (NRMSE), and 

mean absolute error (MAE) are given. (b) Same as (a) but for the independent validation 

against SRDRAD fAOD retrievals. (c, e) Spatial performance (c) and statistical 

characterization (e) of R for AERONET sites. (d, f) Spatial performance (d) and 

statistical distribution (e) of RMSE for AERONET sites. 
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Figure S3. Site-based 5-fold cross-validation for the random forest model , ADLMNo 

Angle-Fusion and ADLM to test their performances and abilities to generalize to unseen 

locations. The AERONET sites are divided into five subsets, each containing a distinct 

20% of available measurement sites. These sites are not involved in the model training 

process and are only used for testing purposes.



S13

Figure S4. (a, b, c) Density scatterplots of (a) ADLM fAOD,(b)ADLMno-angle-fusion 

fAOD and (c) random forest fAOD estimates against AERONET fAODs. The red 

dashed line is the best-fit line from linear regression, and the black solid line is the 1:1 

line. Blue dashed lines outline the error envelope, EE [EE ± (0.03+10%)]. The 

correlation coefficient (R) and root-mean-square-error (RMSE) are given in each panel. 

(d) Boxplots of the fAOD bias (estimated minus AERONET fAOD) of the three models 

(ADLM, ADLMno-angle-fusion and random forest) as a function of AERONET fAOD, 

divided into eight equal quantiles. 
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Figure S5. ADLM fAOD in an urban-scale emissions application. (a) Land-cover types 

from the ESACCI Land Cover product, with urban areas in red. (b) A Californian urban 

megaregion and (c) its corresponding annual fAOD mean values. (d) Spatial patterns 

of fAOD within urban areas at an ultra-high scale, superimposed with roads from the 

Open Street Map dataset. (e) Google map imagery aligned with the high fAOD area 

circled in (d). 
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Figure S6. Density scatterplots of monthly averages for (a) ADLM fAOD, 

(b)VIIRS fAOD, (c)MISR fAOD, (d)MODIS fAOD estimates against 

AERONET fAOD over California. The black dashed line is the best-fit line 

from linear regression, and the black solid line is the 1:1 line.
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Figure S7. (a) Monthly mean fAOD estimates in California and Montana, USA from 

May 2019 to December 2022. Two wildfires are highlighted by black rectangles. 

Spatial distributions of monthly mean fAOD (b-d) in California from August to October 

2020 and (e-g) in Montana from July to September 2021. 
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Figure S8. Spatial detail of fAOD chiefly caused by biomass combustion during 

wildfires on 9 September 2020. 
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Figure S9. (a) Fire perimeter data (FRAP) in California for the years 2019 to 2022. The 

pie chart provides the percentage of fire occurrences by year. The boxplot inset figure 

shows the areal coverage of fire-affected areas from 2019 to 2022. (b) VIIRS fAOD as 

a function of the ADLM fAOD product for individuals fires in the FRAP dataset. The 

solid black and blue lines are the 1:1 line and the best-fit line from linear regression, 

respectively. Histograms show the number (and percentage) of fire events where VIIRS 

fAOD is underestimated compared to ADLM estimates.
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Figure S10. Mean fAOD radiative forcing from MODIS during the 

California wildfires in September 2020 is presented at the top of the 

atmosphere (a), within the atmosphere (b), and at the surface (c). The biases 

in fAOD radiative forcing with ADLM are depicted in d, e, and f.
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Figure S11. Same as Figure S10 but for VIIRS with ADLM comparison.
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Figure S12. Same as Figure S10 but for MISR with ADLM comparison.



S22

References
1. Kaufman, Y. J. et al. Operational remote sensing of tropospheric aerosol over land from EOS 

moderate resolution imaging spectroradiometer. Journal of Geophysical Research, Washington, DC. 
102, 17051-17067 (1997).

2. Ishida, H., Oishi, Y., Morita, K., Moriwaki, K. & Nakajima, T. Y. Development of a support vector 
machine based cloud detection method for MODIS with the adjustability to various conditions. 
Remote Sens. Environ. 205, 390-407 (2018).

3. Oishi, Y., Ishida, H., Nakajima, T. Y., Nakamura, R. & Matsunaga, T. Preliminary verification for 
application of a support vector machine-based cloud detection method to GOSAT-2 CAI-2. Atmos. 
Meas. Tech. 11, 2863-2878 (2018).

4. Arai, K., Iisasa, Y. & Liang, X. Aerosol parameter estimation with changing observation angle of 
ground based polarization radiometer. Adv. Space Res. 39, 28-31 (2007).

5. Yan, X. et al. A minimum albedo aerosol retrieval method for the new-generation geostationary 
meteorological satellite Himawari-8. Atmos. Res. 207, 14-27 (2018).

6. Kaufman, Y. J. et al. Dust transport and deposition observed from the Terra-Moderate Resolution 
Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical 
Research - Atmospheres. 110, D10S-D12S (2005).

7. Kahn, R. A. & Gaitley, B. J. An analysis of global aerosol type as retrieved by MISR. Journal of 
geophysical research. Atmospheres. 120, 4248-4281 (2015).

8. Li, W. et al. Comprehensive Validation and Comparison of Three VIIRS Aerosol Products over the 
Ocean on a Global Scale. Remote sensing (Basel, Switzerland). 14, 2544 (2022).


