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Figure S1. Spatial distributions of ground-based surface O3 monitoring stations from the Ministry of 
Ecology and Environment of China (MEE, blue dots) and the Tropospheric Ozone Assessment Report 
(TOAR, red dots) across China. The black and gray lines on the map indicate provincial and city 
boundaries, respectively. The background map represents the surface elevation (km). 
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Figure S2. Residual histograms of our MDA8 O3 (top panels) estimations and (bottom panels) 
predictions using the out-of-sample and out-of-station cross-validation approaches across daily, monthly, 
and peak-season scales. The red lines and corresponding numbers represent the range within which 80% 
of the residuals fall. 
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Figure S3. Independent validations between our surface MDA8 O3 predictions and MEE O3 
measurements for: (a-c) 2013, (d-f) 2014, and (g-i) 2015, from 945, 945, and 1480 monitoring stations, 
at daily, monthly, and annual levels, respectively. 
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Figure S4. Temporal trends of surface O3 concentration in mainland China during the 2000–2021 period 
at (a) peak-season and (b-e) seasonal scales. The maps show seasonal-scale nationwide anomaly 
variations for (b) spring, (c) summer, (d) autumn, and (e) winter, while panel (a) illustrates the annual 
peak-season change. The inserted line charts in the lower left corner of each panel show peak-season or 
seasonal surface O3 concentrations. The blue (red) dotted line indicates the trend before (after) the 
breakpoints, with the associated value denoting the trend (*: p < 0.05, **: p < 0.01, ***: p < 0.001).  
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Figure S5. Temporal trends of urban areas for each province in mainland China from 2000 to 2021 using 
the global annual urban extents dataset (Zhao et al., 2022). 
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Figure S6. Comparisons of spatial and Gaussian distributions of daily O3 concentrations at 1-km and 10-
km spatial resolutions within the (a-c) “2+26” cities, (d-f) YRD, and (g-i) PRD regions for 4 July 2019. 
Vertical red (blue) lines represent the peaks of the fitted 1-km (10-km) frequency distributions, with the 
accompanying numbers representing the peak levels. 
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Table S1. Overall accuracy and spatial predictive ability of our daily MDA8 O3 retrievals across major 
sub-regions in mainland China from 2013 to 2021, using out-of-sample and out-of-station cross-
validation approaches. 

Region 
Overall accuracy Spatial predictive ability 

R2 RMSE (μg/m3) MAE (μg/m3) R2 RMSE (μg/m3) MAE (μg/m3) 

BTH 0.92 16.64 10.56 0.89 19.51 12.22 

YRD 0.87 17.84 11.95 0.83 20.50 13.35 

SCB 0.88 16.63 11.45 0.85 19.19 13.01 

PRD 0.87 18.37 12.44 0.84 20.94 14.20 

TP 0.85 11.86 8.09 0.62 19.08 13.28 

China 0.89 15.77 10.48 0.84 18.74 12.36 

BTH: Beijing-Tianjin-Hebei, YRD: Yangtze River Delta, SCB: Sichuan Basin, PRD: Pearl River Delta, 
TP: Tibetan Plateau. 
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Table S2. Comparison of previous long-term (more than 5 years) studies estimating O3 concentrations 
for the entirety of mainland China. 
Temporal 
resolution 

Temporal 
coverage 

Spatial 
resolution 

Gapless Model CV-R2 
RMSE 
(μg/m3) 

Reference 

Daily 2013-2020 0.1° × 0.1° Yes data-fusion 0.70 26.00 Xue et al., 2020 

Daily 2005-2017 0.1° × 0.1° No XGBoost 0.76 21.47 Liu et al., 2020 

Daily 2013-2020 0.1° × 0.1° Yes STET 0.87 17.10 Wei et al., 2022a 

Daily 2016-2020 0.1° × 0.1° Yes 3D-CNN 0.88 15.65 Mu et al., 2023 

Monthly 2005-2019 0.05° × 0.05° Yes RF 0.87 13.03 Zhu et al., 2022 

Daily 2013-2017 0.05° × 0.05° Yes NAQPMS 0.89 14.1 Wang et al., 2020 

Daily 2015-2021 0.05° × 0.05° Yes DF 0.91 12.47 Chen et al., 2023 

Daily 2013–2021 0.01° × 0.01° Yes 4D-STDF 0.89 15.77 Our study 

STET: Space-Time Extra-Trees; 3D-CNN: Three-Dimensional Convolutional Neural Network; RF: Random Forest; 
NAQPMS: Nested Air Quality Prediction Modeling System; DF: Deep Forest 
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