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A B S T R A C T

Surface ozone (O3) has become a primary pollutant affecting urban air quality and public health in mainland
China. To address this concern, we developed a nation-wide surface maximum daily average 8-h (MDA8) O3
concentration dataset for mainland China (ChinaHighO3) at a 10-km resolution with a start year of 2013, which
has been widely employed in a wide range of studies. To meet the increasing demand for its usage, we have made
important enhancements, including the development of a more advanced deep-learning model and the incor-
poration of major source updates, such as 1-km surface downward shortwave radiation and temperature directly
from satellite retrievals, as well as a 1-km emission inventory. Additionally, we have extended the temporal
coverage dating back to 2000, increased the spatial resolution to 1 km, and most importantly, notably improved
the data quality (e.g., sample-based cross-validation coefficient of determination = 0.89, and root-mean-square
error = 15.77 μg/m3). Using the substantially improved new product, we have found dynamic and diverse
patterns in national surface O3 levels over the past two decades. Peak-season levels have been relatively stable
from 2000 to 2015, followed by a sharp increase, reaching peak values in 2019 and subsequently declining.
Additionally, we observed a large relative difference of 12 % in peak-season surface O3 concentrations between
urban and rural regions in mainland China. This disparity has greatly increased since 2015, particularly in the
Beijing-Tianjin-Hebei and Pearl River Delta regions. Notably, since 2000, nearly all of the population across
mainland China (> 99.7 %) has resided in areas exposed to surface O3 pollution exceeding the World Health
Organization (WHO) recommended long-term air quality guideline (AQG) level (peak-season MDA8 O3 = 60 μg/
m3). Moreover, the short-term population-risk exposure to daily surface O3 pollution has shown a significant
increasing trend of 1.2 % (p < 0.001) of the days exceeding the WHO’s recommended short-term AQG level
(daily MDA8 O3 = 100 μg/m3) per year during the 22-year period. The overall upward trend (0.73 μg/m3/yr, p
< 0.001) in peak-season surface O3 pollution has led to an exceptionally large rate of increase of 953 (95 %
confidence interval: 486, 1288) premature deaths per year from 2000 to 2021 in mainland China. Urgent action
is required to develop comprehensive strategies aimed at mitigating surface O3 pollution to enhance air quality in
the future.
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1. Introduction

Air pollution has arisen as a notable global environmental issue
regarding both air quality and public health (GBD 2019 Risk Factors
Collaborators, 2020). Ozone (O3) is a naturally occurring component of
the atmosphere, primarily concentrated in the stratosphere (~90 %),
with its presence in the troposphere, especially near the Earth’s surface,
being relatively sparse (Lelieveld and Dentener, 2000; Wei et al.,
2022a). The formation of O3 is impacted by photochemical reactions
involving diverse precursor substances, affected by both natural and
anthropogenic factors. In the stratosphere, O3 is crucial for absorbing
harmful ultraviolet radiation, thereby safeguarding life on Earth. How-
ever, at the surface level, O3, as a potent oxidant, adversely deteriorates
air quality and disrupts ecological systems. Surface O3 also directly
harms vegetation, resulting in leaf damage, malformed fruits, decreased
quality, and reduced agricultural output by causing cellular oxidation
(Sadiq et al., 2017). More importantly, it presents a risk to public health
by contributing to a range of diseases, potentially exacerbating or even
triggering respiratory and cardiovascular conditions, such as asthma,
stroke, hypertension, and inflammatory and coronary diseases
(McConnell et al., 2002; Niu et al., 2022b; Soares and Silva, 2022),
particularly impacting individuals with chronic obstructive pulmonary
disease (COPD) (GBD 2019 Risk Factors Collaborators, 2020). The range
of health issues arising from exposure to surface O3 pollution not only
exacerbates public health burdens but also inflicts important socio-
economic losses (Czechowski et al., 2023; Maji et al., 2019).

Ozone pollution has had pronounced regional implications, espe-
cially in developing countries like China, where it has increased dras-
tically in the last decade. From 2013 onwards, the government of China
has implemented strong clean-air action plans to reduce anthropogenic
emissions, which has successfully reduced fine particulate matter
(PM2.5) concentrations by 45.4 % (Wei et al., 2022a). On the other hand,
surface O3 concentration has significantly increased at an annual rate of
2.49 μg/m3 per year (p < 0.001), offsetting the health benefit of air
quality improvement gained from lowering PM2.5 levels (Wei et al.,
2021). The challenge of surface O3 pollution in mainland China remains
substantial, with ambient O3 notably surpassing PM2.5 as the primary
pollutant impacting urban air quality (Li et al., 2021). To address this
challenge, the Chinese government intensified its efforts in a nationwide
campaign against pollution in 2021 by involving coordinated manage-
ment of both O3 and PM2.5 pollution, with the objective of effectively
controlling the upward trend of O3 concentrations by 2025 (Lu et al.,
2020a).

To date, numerous studies have been undertaken to estimate
spatially continuous surface O3 concentrations from space over China to
minimize the impacts of insufficient spatial representation of ground-
based observations, as well as the accuracy limitations from chemical
transport model simulations (Wei et al., 2023a). Statistical models were
initially employed for their flexible and practically applicable advan-
tages (Mousavinezhad et al., 2021; Wang et al., 2023a). For instance,
Mousavinezhad et al. (2021) employed a multiple linear regression
(MLR) model to estimate daily maximum daily average 8-h (MDA8) O3
concentrations between 2015 and 2019 at a spatial resolution of 10 km.
Wang et al. (2023a) used a generalized additive model to derive daily O3
concentrations from 2017 to 2019 across China at a spatial resolution of
0.1◦ × 0.1◦. Although acceptable results can be obtained, it is very
challenging for statistical models to construct robust conversion re-
lationships for the estimation of surface O3 due to the complexity of the
underlying meteorological and chemical processes (Schlink et al., 2006).

Artificial intelligence (AI) has emerged as a promising new approach
with strong data-mining capabilities, offering the advantage of simu-
lating complex nonlinear processes and problems. A variety of machine-
or deep-learning models has been adopted or extended for air pollutant
modelling, including surface O3 (Chen et al., 2021; Liu et al., 2020; Lyu
et al., 2023; Meng et al., 2022; Mu et al., 2023; Taylan, 2017; Zhang
et al., 2022; Zhu et al., 2022). For example, Liu et al. (2020) employed

an eXtreme Gradient Boosting (XGBoost) algorithm to estimate daily
surface O3 concentrations in China between 2005 and 2017 at a hori-
zontal resolution of 10 km. Mu et al. (2023) developed a three-
dimensional Convolutional Neural Network (3D-CNN) architecture to
estimate daily MDA8 O3 concentrations (0.1◦ × 0.1◦) from 2016 to 2020
across China. Our team has also retrieved daily surface O3 concentra-
tions from 2013 to 2020 in China at a 10-km resolution by employing an
extended space-time extremely randomized trees (STET) model (Wei
et al., 2022a). Note that all these products have coarse spatial resolu-
tions (typically ≥10 km2), limiting their applicability at fine urban
scales. Specifically, they primarily focus on recent surface O3 variations
during relatively short study periods (especially since 2013). In addi-
tion, the Ministry of Ecology and Environment (MEE) of China only
started collecting national ground-level O3 observations after 2013.
Studying the long-term spatiotemporal variations of national, regional,
and city-level surface O3 pollution in China is challenging mainly
because of the scarcity of high-spatial-resolution historical records.

Surface O3 is a great concern for human health, a topic increasingly
being studied in China (Guan et al., 2021; Lu et al., 2020b; Lyu et al.,
2023; Wang et al., 2021; Wang et al., 2022c; Wang et al., 2020b; Zhang
et al., 2019; Zhang et al., 2022). Wang et al. (2020a) evaluated China’s
premature respiratory deaths resulting from prolonged exposure to
surface O3 pollution during a five-year period (2013–2017) and identi-
fied notable interannual fluctuations in both air pollution and mortality
burden at various spatial scales, underscoring the importance of high-
spatial-resolution data for more localized (urban) analyses. Wang
et al. (2021) also noted that the sum of premature deaths due to long-
term surface O3 exposure has increased steadily by ~19.8 thousand
people per year since 2013 in China. However, the scarcity of long-term
surface O3 data has led previous studies to concentrate on mortality in
recent years (typically less than 10 years) related to O3 exposure in
China. Consequently, long-term trends of surface O3 pollution, along
with the resulting mortality-associated health effects, remain unclear
over the past two decades in China.

Short-term surface O3 exposure has garnered much attention due to
its widespread impact on the population (Liu et al., 2019a, 2021;
Orellano et al., 2020; Xiao et al., 2022). Zhang et al. (2022a) conducted
a meta-analysis on short-term surface O3 exposure in China and found
that from 1990 to 2021, all-cause mortality, cardiovascular mortality,
and respiratory mortality greatly increased, and surface O3-attributed
short-term all-cause deaths increased by 8.73 % from 2014 to 2020
(Zhang et al., 2022b). This growing emphasis on short-term assessments
of daily O3 exposure and its correlation with mortality risk underscores
the critical need for spatially continuous daily data. There is thus a
pressing need to obtain long-term, daily, gapless (complete spatial
coverage) surface O3 data at an elevated spatial resolution, which would
facilitate detailed investigations at a finer scale when assessing the ef-
fects of surface O3 exposure on both air quality and public health.

Questions to ask are: What were the distributions of surface O3
concentrations, and how have they evolved over the last two decades?
What are their impacts on public health concerning both long-term and
short-term exposure to surface O3 pollution? To address these questions,
we reconstructed a 22-year (from 2000 to 2021) daily surface O3 con-
centration dataset covering mainland China, which is spatially gapless
(100 %) and has a high spatial resolution of 1 km. This dataset was
derived from ground-based surface O3 measurements and satellite re-
trievals of surface solar radiation and temperature, using a refined deep-
forest model that considers multi-dimensional spatiotemporal informa-
tion combined with meteorological parameters, an atmospheric rean-
alysis, and an emission inventory. The model’s performance was
rigorously accessed through 10-fold cross-validation and independent
validation approaches. This unique dataset enables the comprehensive
analysis of two-decade-long spatiotemporal O3 variations, population-
exposure risk, as well as the mortality burden, a dual perspective
encompassing both long-term and short-term outlooks at each 1-km2

grid across mainland China. Last, the distinct advantages of the finer-
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resolution data are highlighted through a comparison with coarse-
resolution data, focused on air quality and public health applications.

2. Materials and methods

2.1. Surface O3 observations

Here, we used hourly ground-level O3 data from two different
terrestrial networks. One was sourced from the MEE, serving as the
ground truth input for our deep-learning model to derive surface O3
concentrations. These data (unit: μg/m3) are observed at ~1630 moni-
toring stations (marked as blue dots in Fig. S1) every hour (recorded at
local time) under standard conditions (273 K, 1013 hPa), starting in
2013. However, starting from 31 August 2018 onward, they were
adjusted to room temperature and pressure conditions, i.e., 298 K and
1013 hPa. To maintain consistency in O3 measurements, we scaled the
newly measured values by a factor of 1.09375 to align them with the
same standard conditions (MEE, 2018; Wei et al., 2022a).

The second source of data came from the Tropospheric Ozone
Assessment Report (TOAR) database, which was not used as ground
truth for model training but for independent validation purposes only.
TOAR boasts the world’s largest collection of tropospheric O3 data,
collecting long-term surface O3 measurements from over 10,000 stations
globally. There are four TOAR ground monitoring stations located in
China, strategically positioned in both eastern and western regions,
providing hourly observations since 1994 (marked as red dots in Fig.
S1). Note that TOAR surface O3 measurements are recorded in ppb at
Coordinated Universal Time (UTC). We thus adjusted TOAR observa-
tions to ensure consistency with MEE measurements (MEE, 2018),
including a time zone change (from UTC to local time) and a unit con-
version (from ppb to μg/m3) under standard conditions (i.e., 273 K and
1013 hPa). Additionally, MDA8 O3 concentrations from MEE and TOAR
were computed for each monitoring station in mainland China,
following the quality control procedures described in our previous study
(Wei et al., 2022a).

2.2. Refined ChinaHighO3 framework

The ChinaHighO3 dataset refers to the high-spatial-resolution (10
km) and high-data-quality [with an average sample-based (station-
based) coefficient of determination (R2) of 0.87 (0.80) and root-mean-
square error (RMSE) of 17.10 (21.10) μg/m3] daily surface MDA8 O3
data in mainland China covering the period 2013–2020, part of the
ChinaHighAirPollutants (CHAP) series. It was generated using an
extended ensemble-learning approach known as the STET model (Wei
et al., 2022a). In this study, we have refined the ChinaHighO3 frame-
work by implementing several major improvements: replacing the core
STET model with an advanced four-dimensional spatiotemporal deep
forest (4D-STDF) model, enhancing the spatial resolution from 10 km to
1 km with key high-resolution input variables, and extending daily data
records back to 2000 (Table 1). Additionally, using this two-decade
(2000− 2021), high-temporal-resolution (daily), and high-spatial-
resolution (1 km) gapless (spatial coverage = 100%) surface MDA8 O3
dataset, we assessed both long-term trends in air quality and the asso-
ciated (especially short-term) health impacts.

2.2.1. Model enhancements
Instead of conventional machine-learning models, this study

employed a more advanced deep-learning model, i.e., deep forest (DF),
showcasing a stronger data mining capability. DF uses the Multi-Grained
Scanning approach to capture features and generate new input charac-
teristics. It combines hierarchical decision trees to capture complex data
patterns, beginning with base layers of decision trees from Random
Forests and Extra Trees. These are then stacked in a cascade forest
structure across multiple training layers. The results from these layers
are finally integrated using an advanced model, such as the Forest, Ta
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XGBoost, or LightGBM (Zhou and Feng, 2019). In our study, hyper-
parameter optimization was conducted using a loop iteration method.
Optimal settings include the number of estimators in each cascade layer
set to 4, the number of trees in each estimator set to 100, no maximum
depth for each tree, and the type of predictor concatenated to the DF
being LightGBM. Compared with machine-learning and other neural-
network-derived deep-learning models, it offers unique advantages,
including local perception, parameter sharing, spatial invariance,
feature extraction, and automatic learning. It is particularly notable for
requiring a smaller number of hyperparameters and adjustments,
demonstrating proficiency in effectively handling data-intensive tasks
(Anghel et al., 2018; Liu et al., 2019b).

Apart from improving the model, we have made important im-
provements in capturing spatiotemporal information about air pollution
during the modelling process. Considering the unequal impact of air
pollution variations over both space and time, we departed from using
the previously employed direct great-circle distances between spatial
points. Instead, we adopted a similar polar coordinate form to distin-
guish their spatiotemporal similarities and differences more accurately,
leading to an improved 4D-STDF model (Wei et al., 2023a). The space
factor is denoted by three Euclidean spherical coordinates [S1, S2, and
S3], which are functions of the geographical coordinates, namely,
longitude (Lon) and latitude (Lat) (Eqs. 1–3). The time factor is repre-
sented by three helix-shape trigonometric vectors [T1, T2, and T3], which
are functions of the day of the year (DOY) and the complete count of
days within a single year (N) (Eqs. 4–6), capturing temporal variations
and particularly emphasizing seasonal cycles.

S1 = sin
(

2π Lon
360

)

(1)

S2 = cos
(

2π Lon
360

)

sin
(

2π Lat
180

)

(2)

S3 = cos
(

2π Lon
360

)

cos
(

2π Lat
180

)

(3)

T1 =
DOY
N

(4)

T2 = cos
(

2πDOY
N

)

(5)

T3 = sin
(

2πDOY
N

)

(6)

2.2.2. Data source updates
We have updated the major input predictors to a higher spatial res-

olution of 1 km for estimating surface O3 concentrations compared to
our previous study that generated data at a 10-km resolution (Wei et al.,
2022a). Specifically, we replaced the two key meteorological variables,
surface downward shortwave radiation (DSR) and air temperature
(TEM)—which contributed 32 % and 14 %, respectively, to the esti-
mation of surface O3 via photochemical reactions (Wei et al., 2022a)—
from the coarse-resolution (0.1◦ × 0.1◦) European Centre for Medium-
Range Weather Forecasts Reanalysis v5 (ERA5) global reanalysis with
newly released Moderate Resolution Imaging Spectroradiometer
(MODIS) 1-km-resolution DSR (Wang et al., 2020a) and land surface
temperature (LST) (Zhang et al., 2022c) products. Additionally, we
updated the three main anthropogenic emissions of O3 precursors (i.e.,
NOX, VOCs, CO) by replacing the monthly Multi-resolution Emission
Inventory for China (MEIC) dataset (0.25◦ × 0.25◦) with the daily Air
Benefit and Cost and Attainment Assessment System-Emission Inventory
(ABaCAS-EI) dataset at a 1-km resolution (Li et al., 2023). In addition to
the increased computational power, the improvements in input vari-
ables allow us to enhance surface O3 estimates from a 10-km to 1-km
resolution.

Other variables remained the same as our previous study, including
main meteorological variables, i.e., boundary-layer height, relative hu-
midity, horizontal and vertical winds, surface pressure, evaporation, and
precipitation, obtained from the ERA5 reanalysis (0.1o to 0.25o), as well
as land-surface- and population-related features, including the normal-
ized difference vegetation index (1 km), surface elevation (90 m), and
population distribution (1 km), provided by MODIS, the Shuttle Radar
Topography Mission (SRTM), and LandScan™, respectively. Finally, we
aggregated or resampled all variables to maintain a consistent resolution
of 1 km with the main predictors using a bidirectional interpolation
approach. Fig. 1 shows the flowchart of our updated ChinaHighO3
framework.

2.3. Population-exposure risk assessment

Both long-term and especially short-term exposures to surface O3
pollution are linked to heightened risks of disease and mortality (Bell
et al., 2004; Turner et al., 2015). TheWorld Health Organization (WHO)
has issued recommended air quality guidelines (AQGs) since 1987 with
the aim of promoting healthy air to optimize both air quality and health
benefits. The most recent version, updated in September 2021, recom-
mends two long-term interim targets (L-IT1 and L-IT2) and one AQG (L-
AQG) level with peak-season MDA8 O3 concentrations (six consecutive
months with the highest six-month running-average O3 concentration
according to WHO’s definition) of 100, 70, and 60 μg/m3, respectively.
There are also three similarly recommended short-term air quality
standards (S-IT1, S-IT2, and S-AQG), with daily MDA8 O3 concentra-
tions set at 160, 120, and 100 μg/m3, respectively.

Here, we evaluated the population-risk exposure to long-term and
short-term surface O3 pollution according to the WHO-recommended air
quality guidelines. For the prolonged O3 exposure risk assessment, we
computed the annual percentage of populated areas where the peak-
season population-weighted MDA8 O3 value exceeded the WHO’s rec-
ommended long-term air quality standards, along with the proportions
of the population residing in polluted areas (i.e., population density >

0). In the case of the short-term O3 exposure risk assessment, we
calculated the percentage of days where the daily population-weighted
MDA8 O3 value surpassed the short-term air quality standards recom-
mended by WHO within one year at each 1-km2 grid across mainland
China.

2.4. Mortality burden estimation

Both long-term and short-term exposures to surface O3 pollution
have important health impacts, e.g., COPD, as evidenced by many
studies (GBD 2019 Risk Factors Collaborators, 2020). To assess the
mortality burden induced by long-term surface O3 exposure, we used a
log-linear exposure-response function from the Global Burden of Disease
(GBD) study (GBD 2019 Risk Factors Collaborators, 2020), i.e., the
relative risk (RR) for mortality is 1.061 [95 % confidence interval (CI):
1.029–1.093] with an increase in peak-season MDA8 O3 concentration
per 10 ppb. Premature deaths resulting from long-term O3 exposure can
then be estimated as follows:

LDg,y =
(
1 − 1

/
RRj,g

)
×Popg,y ×By (7)

where LDg,y refers to the cumulative fatality count (unit: people)
attributed to long-term O3 exposure in grid g in year y; RRg,j represents
the RR at exposure level j in grid g relative to the population exposed to
above the theoretical minimum-risk exposure level (29.1–35.7 ppb);
Popg,y denotes the population in grid g in year y, provided by the annual
LandScan™ population distribution (1 km) product; and By signifies the
baseline mortality rate of COPD in year y in China, collected from the
GBD database.

For acute health impacts, we used the log-linear exposure-response
function derived from a nationwide representative large cohort study in
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China, i.e., the RR for mortality is 1.0024 (95% CI: 1.0013–1.0035) with
every 10 ppb rise in daily MDA8 O3 concentration (Yin et al., 2017). The
mortality burden due to short-term surface O3 exposure in one day can
then be calculated using the daily MDA8 O3 concentration and classic
risk assessment method (Guan et al., 2021):

SDg,d =
(
1 − 1

/
RRj,g

)
×Popg,y ×

(
By

365

)

(8)

where SDg,d refers to the number of mortalities resulting from short-term
surface O3 exposure within a specific grid g on a particular day d. The

term RRg,j indicates the effect estimates for the population at exposure
level j in grid g. Popi denotes the population in grid g for year y, and the
expression (By/365) represents the daily baseline of total mortality rate
in grid g.

2.5. Validation and analysis methods

We assessed the model’s performance by using the common 10-fold
cross-validation (10-CV) method and independent validation ap-
proaches. Initially, we used the widely used sample-based (out-of-sam-
ple) 10-CV procedure to verify the overall accuracy of the model (i.e.,

Fig. 1. Flowchart of the updated ChinaHighO3 framework in this study (text in red and dotted boxes highlight the main steps that were improved, encompassing the
inputs, model, and validation). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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dividing data samples into 10 folds, where 1 fold is for validation and the
other 9 folds are for training) using MEE measurements from 2013 to
2021 (Wei et al., 2022a). Furthermore, we employed an additional
station-based (out-of-station) 10-CV approach by randomly dropping
MEE stations for validation to assess the model’s spatial predictive
ability in areas where no ground measurements were available
(Table 1). Specifically, this approach randomly divides all MEE moni-
toring stations in mainland China into 10 equally sized groups. In each
CV iteration, data samples from 9 groups (90 % of the stations) are used
for training, while data samples from the remaining group (10 % of the
stations) are used for independent validation. This process was repeated
10 times, ensuring that each station’s measurements serve as validation
data once.

Studying long-term air pollution trends relies heavily on the quality
of historical records, particularly when ground-based observations are
lacking before 2013. Independent validation against other ground-truth
sources helps identify potential errors or discrepancies (Oberkampf and
Roy, 2010). Therefore, measurements from the TOAR network were
employed to independently validate our surface O3 predictions before
2013, when MEE measurements were unavailable. Additionally, we
conducted an independent validation following our previous approach
(Wei et al., 2021). Specifically, we trained our model using data samples
from post-2016 and then predicted surface O3 levels for the years 2015,
2014, and 2013 separately. These predictions were subsequently vali-
dated against ground measurements from the corresponding years,
sourced from 1480, 945, and 945 monitoring stations, respectively,
across mainland China.

We used the population-weighted surface O3 concentration to eval-
uate the exposure risk and mortality burden from surface O3 pollution,
expressed as:

Cpw,g =

∑n
i=1

(
Cg × Popg,y

)

∑n
i=1Popg,y

(9)

where Cpw,g represents the population-weighted O3 concentration within
grid g, and Cg,y and Popg,y represent the surface O3 concentration and
population in the same grid g, respectively. Furthermore, we used
monthly surface O3 anomalies by removing seasonal cycles to calculate
temporal trends through the approach of linear regression using the
least-squares method, then assessed the confidence levels of the esti-
mated trends to determine their significance using the two-sided hy-
pothesis test method (Wei et al., 2019).

In this research, we integrated an analysis of temporal series with a
sliding window (spanning at least 12 months) approach to identify
breakpoints during the long-term period when a reverse trend emerged,
following the approach adopted in our previous study (Wei et al.,
2023a). This can pinpoint the greatest level of change in opposing di-
rections in trends before and after the breakpoint by assessing both the
magnitude of the change and the probability of statistical significance of

trends on either side of the potential breakpoint. Here, we considered
the statistical significance beyond a 90% confidence level (p< 0.1) on at
least one side.

3. Results and discussion

3.1. Model validation and comparison

We first evaluated the model’s overall accuracy using ~4.2 million
data samples gathered from 2013 to 2021 in mainland China, employing
an out-of-sample (sample-based) 10-CV approach (Table 2). Validation
results show that our model can estimate daily MDA8 O3 concentrations
more accurately across different years, as evidenced by increasing cross-
validation R2 (CV-R2) values ranging from 0.79 to 0.94 and decreasing
RMSE [mean absolute error (MAE)] values from 22.56 (14.64) to 10.62
(7.39) μg/m3. This is attributed to the increase in the density of site
observations and the growth in sample size over time, thereby
enhancing the model’s training capabilities and overall accuracy. In
general, our 1-km daily MDA8 O3 estimates and surface measurements
are highly consistent, with an average CV-R2 of 0.89 and RMSE (MAE)
value of 15.77 (10.48) μg/m3 (Fig. 2a). The station-based CV results
demonstrate a strong spatial predictive ability, with an increase in CV-R2

from 0.68 to 0.93 and a decrease in RMSE (MAE) from 28.45 (19.22) to
11.39 (7.91) μg/m3 over the years from 2013 to 2021 (Table 2). This
improvement is mostly attributed to the increasing number of ground
observations across mainland China. On average, the CV-R2 is 0.84, with
an RMSE (MAE) value of 18.74 (12.36) μg/m3, respectively (Fig. 2c).
This illustrates the model’s robustness in predicting surface O3 levels in
areas lacking ground-based measurement data. The accuracy of monthly
and annual estimates and predictions has continuously improved during
the period 2013–2021 (Fig. 2). Additionally, we evaluated the model
performance by creating residual histograms to compare our MDA8 O3
retrievals with MEE observations across various temporal scales. In
general, the histograms of their differences show normal distributions
across daily, monthly, and peak-season scales. Specifically, 80 % of the
residuals fall within ± 16, ± 10, and ± 8 μg/m3, respectively (Fig. S2a-
c). Similar findings are observed for our MDA8 O3 predictions, where
nearly 80 % of them demonstrate high consistency with observations,
with residuals of ± 19 μg/m3, ± 13 μg/m3, and ± 8 μg/m3 at the three
temporal scales, respectively (Fig. S2d-f).

Furthermore, we evaluated the model performance in retrieving
daily MDA8 O3 levels across five major sub-areas in mainland China
(Table S1). The overall accuracy is consistently reliable across all re-
gions, with sample-based CV-R2 values exceeding 0.85 and RMSE and
MAE values below 19 and 13 μg/m3, respectively. Performance is
notably strong in the Beijing-Tianjin-Hebei (BTH) region (CV-R2 = 0.92,
RMSE = 16.64 μg/m3). Our model also demonstrates robust spatial
predictive ability in most regions, with station-based CV-R2 values
greater than 0.83 and small uncertainties (i.e., RMSE = 19–21 μg/m3,

Table 2
The 10-fold CV results of MDA8 O3 concentrations (μg/m3) at a 1-km resolution for each year from 2000 to 2021 in mainland China. The values in parentheses
represent the percentage change compared to the validation results of CHAP O3 at a 10-km resolution.

Overall accuracy Spatial predictive ability

Year R2 RMSE(μg/m3) MAE(μg/m3) R2 RMSE(μg/m3) MAE(μg/m3)

2013 0.79 (↑0.1) 22.56 (↑2.6) 14.46 (↓2.5) 0.68 (↑7.4) 27.96 (↓5.4) 18.80 (↓5.1)
2014 0.81 (↑1.6) 22.26 (↓0.6) 14.64 (↓1.2) 0.69 (↑6.4) 28.45 (↓5.2) 19.22 (↓6.3)
2015 0.81 (↑2.0) 20.62 (↓1.3) 13.98 (↑0.6) 0.70 (↑8.6) 25.75 (↓7.2) 17.72 (↓6.1)
2016 0.84 (↑2.3) 18.08 (↓5.8) 12.54 (↓3.5) 0.77 (↑6.5) 21.69 (↓8.5) 15.28 (↓6.7)
2017 0.90 (↑1.4) 14.69 (↓5.3) 10.45 (↓3.2) 0.87 (↑2.8) 16.69 (↓6.3) 11.93 (↓4.9)
2018 0.92 (↑1.2) 13.13 (↓6.9) 9.26 (↓4.0) 0.90 (↑2.5) 14.57 (↓7.0) 10.28 (↓5.0)
2019 0.93 (↑1.6) 13.00 (↓7.1) 9.07 (↓4.5) 0.92 (↑1.2) 14.24 (↓7.0) 9.95 (↓5.1)
2020 0.94 (↑1.2) 11.08 (↓7.4) 7.68 (↓3.6) 0.93 (↑1.1) 12.01 (↓7.3) 8.34 (↓4.2)
2021 0.94 10.62 7.39 0.93 11.39 7.91
2013–2020 0.88 (↑1.1) 16.52 (↓3.4) 11.03 (↓2.3) 0.83 (↑3.6) 19.75 (↓6.4) 13.14 (↓5.3)
2013–2021 0.89 (↑2.3) 15.77 (↓7.8) 10.48 (↓7.2) 0.84 (↑5.0) 18.74 (↓11.2) 12.36 (↓10.9)
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and MAE= 12–15 μg/m3). However, the model does not perform as well
for the Tibetan Plateau, having the lowest CV-R2 value of 0.62, primarily
due to the sparsity of monitoring stations and the topographically
complex natural environment.

Compared to 10-km data (Wei et al., 2022a), the 1-km data has an
improved overall accuracy, with CV-R2 values increasing from 0.1 % to
2.3 % (average= 1.1 %) and RMSE and MAE values decreasing from 0.6
% to 7.4 % (average= 3.4 %) and 0.6 % to 4.5 % (average= 2.3 %) over
the years, respectively (Table 2). Similar continuous improvements in
predictive accuracy are also observed from 2013 to 2020, with the
average station-based CV-R2 value increasing by 3.6 % and average
RMSE and MAE values decreasing by 6.4 % and 5.3 %, respectively.
These results illustrate that our updated framework not only achieves a
tenfold increase in spatial resolution but also enhances the quality of the
data. This high-resolution and high-quality data will be highly valuable
in monitoring air pollution and assessing exposure risks on a finer scale,
particularly within urban areas.

Additionally, we used TOAR long-term ground-based O3 observa-
tions to validate our reconstructed data records before 2013. Unlike CV,
we directly compared our satellite-based MDA8 O3 retrievals with in-
dependent TOAR measurements at four monitoring stations in mainland
China (Fig. 3a-c). This comparison involved 9982, 217, and 34 collo-
cated samples at daily, monthly, and annual levels, respectively. Inde-
pendent validation with TOAR measurements further illustrates the
reliability of historical predictions on daily [correlation coefficient (R)
= 0.80, RMSE = 16.39 μg/m3], monthly (R = 0.89, RMSE = 15.16 μg/
m3), and annual (R = 0.90, RMSE = 10.39 μg/m3) scales, especially for

the period before 2013 when there were no MEE observations.
Furthermore, we tested our model performance in predicting his-

torical surface O3 concentrations for the years 2015, 2014, and 2013
separately, using a model trained on data samples from subsequent years
(post-2016). The overall accuracy of our predictions, based on a total of
985,688 daily, 19,045 monthly, and 2889 annual collocated data sam-
ples for these years (2013–2015), remains reliable across different
temporal scales: daily (R = 0.90, RMSE = 40.11 μg/m3), monthly (R =

0.97, RMSE = 12.60 μg/m3), and annual (R = 0.97, RMSE = 9.00 μg/
m3) (Fig. 3d-f). Importantly, our daily predictions consistently align
with ground measurements in all evaluation indicators across different
years. Specifically, we achieve the same R values of 0.9 and slopes
greater than 0.8, with RMSE (MAE) values ranging from 38 (28) to 41
(30) μg/m3 (Fig. S3). Similar conclusions can be observed in the monthly
(R = 0.96–0.98, RMSE = 10–13 μg/m3) and annual (R = 0.96–0.97,
RMSE = 8–9 μg/m3) composites. These findings demonstrate, in part,
the overall robustness and stability of our model in reconstructing his-
torical (pre-2013) surface O3 concentrations. This suggests that the data
samples used are large enough for the current application.

Although we have provided additional context through independent
validations, the scarcity of ground-based measurements before 2013
suggests that our historical predictions still contain uncertainties and
biases. This limitation underscores the need for future work to gather
more comprehensive validation datasets to better assess the reliability of
these historical predictions. It is also important to note that our input
variables may have systemic discrepancies, particularly for the main
inputs derived from MODIS products. For example, i.e., MODIS DSR

Fig. 2. Density scatter plots of sample-based (top row) and station-based (bottom row) 10-fold cross-validation (CV) outcomes for daily (left column), monthly
(middle column), and peak-season (right column) surface O3 retrievals in mainland China between 2013 and 2021. Dotted black lines represent 1:1 lines, and solid
red lines indicate optimal-fit lines derived from linear regression. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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products have an average accuracy (R2) of 0.86 with an RMSE value of
119.2 W/m2 against field measurements (Wang et al., 2020a), while
MODIS gap-filled LST products have average R2 values ranging from
0.98 to 1 and RMSE values ranging from 1.33◦ to 1.88◦ for daytime and
nighttime compared to ground measurements (Zhang et al., 2022c).
These uncertainties can amplify during the model training process,
potentially affecting the quality of our ChinaHighO3 dataset.

3.2. Spatiotemporal surface O3 variations during 2000–2021

Using the 4D-STDF model, we have generated seamless daily O3
maps from 2000 to 2021 in mainland China with a 1-km spatial reso-
lution. Fig. 4 illustrates the spatial distributions in peak-season surface
O3 concentrations in mainland China for each year over the past two
decades. Over the 22-year span, most of northern China has consistently
experienced elevated ambient O3 levels surpassing 120 μg/m3, with
notable hot spots in the North China Plain (NCP) and Yangtze River
Delta (YRD) region. However, in the southwest region of China and
Heilongjiang province, surface O3 pollution has remained comparatively
lower (~80 μg/m3). Temporally, surface O3 concentrations underwent
large fluctuations: from 2000 to 2016, they remained relatively stable,
averaging between 92.6 ± 22.8 μg/m3 to 95.5 ± 14.7 μg/m3. The BTH
(average = 116.5 ± 8.9 μg/m3) and NCP (average = 115.3 ± 11.3 μg/
m3) regions exhibited more severe O3 pollution, consistently surpassing
100 μg/m3. This could potentially be attributed to the heavy industrial
activity in northern areas, resulting in higher precursor emissions (Wei
et al., 2022b). Conversely, the Pearl River Delta (PRD) (average = 88.0

± 6.1 μg/m3) experienced comparatively lighter O3 pollution. However,
a marked increase in O3 concentration has been observed across main-
land China since 2017, especially in the eastern and northern regions,
where O3 concentrations reached above 120 μg/m3, highlighting the
challenge in further improving the air quality in China (Hashim et al.,
2021; Zhao et al., 2022b). The year 2019 recorded the highest O3 con-
centrations, averaging 114.9 ± 17.8 μg/m3 across mainland China, with
more severe conditions observed in the NCP (~153.8± 10.7 μg/m3) and
BTH (~147.1 ± 17.8 μg/m3) regions. Additionally, the PRD (~102.8 ±

7.0 μg/m3) surpassed the 100 μg/m3 mark for the first time after 2000.
After 2019, a decline in nationwide O3 pollution was seen, notably
prominent in the NCP region. Tibet has shown a more dramatic increase
in surface O3 concentrations between 2016 and 2021 compared to other
provinces, also noted in previous studies (Chen et al., 2022b; Yin et al.,
2022). More frequent stratosphere-troposphere exchange events pri-
marily lead to stratospheric O3 intrusions and substantial increases in
local surface O3 pollution (Liu et al., 2022a; Yang et al., 2022; Yin et al.,
2023) despite the relatively low levels of O3 precursors (e.g., NOx and
VOCs). In addition, the high altitude, low latitude, and extensive snow
cover of the Tibetan Plateau result in intense solar radiation (Lin et al.,
2008), which, along with the long-range transport of various pollutants,
further promotes O3 formation (Xu et al., 2018).

To delve deeper into the long-term variations in surface O3 concen-
trations, we calculated the temporal trends of MDA8 O3 from 2000 to
2021 at both seasonal and annual (specifically, peak-season) scales (Fig.
S4). In general, 97 % of the regions showed an increasing annual trend,

Fig. 3. Independent validations between our surface MDA8 O3 predictions and (a-c) TOAR O3 measurements from four monitoring stations since 2000, and (d-f) MEE
O3 measurements from 1480 unique monitoring stations during 2013–2015 in mainland China, at daily, monthly, and annual levels, respectively.
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with the largest increases (> 2 μg/m3/yr, p < 0.05) concentrated in
southeastern regions and areas adjacent to the Central China Plain (Fig.
S4a). This trend, particularly evident after 2016, recorded a substantial
increase of 3.77 μg/m3/yr (p < 0.001). Differences exist at seasonal
levels: In spring (Fig. S4b), there was an upward trend in O3 concen-
tration over the largest expanse, covering ~98 % of the country’s re-
gions. Additionally, the springtime trend did not change much before
2014, when a modest increase began in 2014 (3.37 μg/m3/yr, p <

0.001). Among the four seasons, summertime O3 showed the strongest
upward trend, especially notable since 2016 (4.05 μg/m3/yr, p < 0.001)
and particularly evident in the NCP region (Fig. S4c). In autumn (Fig.
S4d), the annual trend in O3 variations showed an increasing trend over
most of mainland China (~90%), with decreasing trends observed in the
northeast and southwest regions. By contrast, O3 pollution was at its
lowest in winter (average = 65.3 ± 5.3 μg/m3; ~1.5 times lower than in
summer). Similarly, a slightly increasing trend occurred in most parts of
eastern China. A shorter duration of sunlight and lower temperatures in
winter in the Northern Hemisphere hinder surface O3 production.

To further investigate the dynamic and diverse patterns in surface O3
pollution over the past two decades, we plotted the time series of
monthly O3 anomalies for mainland China and each typical region
(Fig. 5). Throughout the study period (2000–2021), a noticeable rise in
population-weighted O3 concentrations was observed inmainland China
(0.73 μg/m3/yr, p < 0.001) and three key urban regions, i.e., BTH (0.93
μg/m3/yr, p < 0.001), YRD (0.80 μg/m3/yr, p < 0.001), and PRD (0.54
μg/m3/yr, p< 0.001) (Fig. 5b-d). This is linked to rapid industrialization
and urbanization, accompanied by a widespread surge in the release of
O3 precursor emissions, specifically VOCs and NOX, from vehicles, in-
dustries, and power plants (Yang et al., 2023; Zeng et al., 2019).

However, the trends differed, or even became opposite, during sub-
periods at both national and regional levels. In mainland China, sur-
face O3 levels remained relatively stable until about 2015, after which
O3 levels experienced a sharp increase (4.36 μg/m3/yr, p < 0.001),
reaching a peak in 2019, followed by a subsequent decline (− 1.95 μg/
m3/yr, p < 0.05). Similarly, yet with distinct nuances, the three key
regions initially experienced overall declines persisting until 2014,
except for PRD (where the decrease continued until 2016), followed by
substantial increases across all regions observed until 2019. One po-
tential reason for the recent increase in O3 levels is the continuous
decrease in NO2 concentrations in recent years (Anenberg et al., 2022;
Wei et al., 2022b), facilitating the accumulation of O3 in the atmosphere.
Another notable decline was observed in most regions in China (Wang
et al., 2023b), particularly evident in BTHwith a decrease of 6.71 μg/m3

per year (p < 0.01), while PRD exhibited an exception with an increase
of 1.63 μg/m3 per year. This is attributed to reduced emissions of O3
precursors during the COVID-19 lockdowns in 2020 (Adame et al.,
2022), coupled with the ongoing implementation of continuous air
quality protection policies by the Chinese government (Ren et al., 2022).
Note that the “2 + 26” cities (i.e., BTH and surrounding cities) situated
within the core of the NCP exhibited the largest increase during the
entire period (1.14 μg/m3/yr, p < 0.001). This increase was particularly
prominent for the period 2016–2019 (6.02 μg/m3/yr, p < 0.01). How-
ever, these cities demonstrated the smallest decrease (− 4.74 μg/m3/yr,
p < 0.05) in the subsequent period of 2020–2021 (Fig. 5e-f), high-
lighting the severity of O3 pollution in urban areas.

The distinct advantage of 1-km data enables us to examine the dif-
ferences and variations in peak-season O3 concentration between urban
and rural areas in mainland China using the annual urban extents

Fig. 4. Average peak-season surface O3 maps at a 1-km resolution spanning 2000 to 2021 for mainland China. The central map shows the 22-year average, and
smaller maps surrounding it show maps for each individual year.
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dataset (Zhao et al., 2022a), specifically in typical urbanized areas
(Fig. 6). Over the past two decades 2000–2021, urban areas exhibited a
large average relative (absolute) difference, ~12.2 % (12.0 μg/m3)
higher than their rural counterparts in mainland China. Similar
distinctive urban-rural differences were also evident at the regional
scale, especially in YRD, with an average relative (absolute) difference
of 10.0 % (10.4 μg/m3). Furthermore, the urban-rural contrast changed
over time. The national difference increased both before and after 2015,
rising from 11.4 μg/m3 (12.0 %) to 13.8 μg/m3 (12.8 %). Similarly, in
both BTH and PRD regions, the persistent severity of O3 pollution
contributed to a growing disparity in peak-season O3 concentrations
between urban and rural areas, i.e., the relative difference escalated
from 6.0 % and 4.9 % before 2015 to 6.5 % and 6.9 % afterwards,
respectively. This trend is likely attributed to the positive relationship
between the discrepancy in O3 levels and urbanization (An et al., 2023;
Xing et al., 2022), particularly in the PRD, where the urbanization rate
from 2016 to 2021 was about six times higher than that from 2000 to
2015 (calculated from the annual urban extents dataset). Increased ur-
banization likely brought on higher emissions and hotter weather con-
ditions. By contrast, the YRD region had the opposite trend of decreasing
urban-rural differences in peak-season O3 levels. The relative (absolute)
difference dropped from 11.9 % (12.0 μg/m3) during 2000–2015 to 5.0
% (6.0 μg/m3) during 2016–2021, suggesting that O3 pollution has been
increasingly spreading within the region.

3.3. Population-risk exposure to surface O3 pollution

3.3.1. Long-term O3 exposure risk
The 22-year ChinaHighO3 dataset enables a detailed assessment of

health risks due to long-term exposure to O3, guided by WHO’s peak-
season O3 standards. During the peak season, severe O3 pollution
reached alarming levels in mainland China from 2000 to 2021 (Fig. 7a).
Since 2013, there has been a significant increase in the area exceeding
the L-IT1 level (2.57 %/yr, p < 0.001) and a concurrent notable rise in
the percentage of the population affected (4.73 %/yr, p < 0.01). Over
the past 22 years, there have been consistent and stable trends in the
proportion of areas (days) exceeding the L-IT2 and AQG levels, aver-
aging 45.0 % (99.2 %) and 45.4 % (99.7 %) of the territory (people),
respectively. This directly reflects a more pronounced surface O3
pollution issue in mainland China under the stricter standards. Regional
O3 exposure risks are indeed a notable concern, particularly in BTH
(Fig. 7b), e.g., the average proportions of polluted areas exceeding L-IT1,
L-IT2, and L-AQG levels are 90.8 %, 93.7 %, and 97.1 %, respectively.
On average, over 95 % of the population within the region was exposed
to surface O3 pollution that surpassed these three standards. YRD wit-
nessed the most rapid increase in surpassing the L-IT1 level among all
regions post-2013, escalating by 6.58% per year (p< 0.01), while trends
under the L-IT2 (L-AQG) level remained relatively stable, with small
changes (< 0.03 %/yr) within 94.6 % (94.7 %) each year (Fig. 7c).
Meanwhile, there was a significant rise in the percentage of the YRD
population experiencing O3 levels exceeding the L-IT1 level at a rate of
4.13 %/yr (p < 0.01) since 2013. Additionally, nearly all the population
resided in areas exposed to surface O3 pollution exceeding the L-IT2 and
L-AQG levels (average = 99.5 % and 99.7 %, respectively). In PRD
(Fig. 7d), large annual fluctuations were observed at the L-IT1 level, i.e.,
overall dramatic upward trends of 1.46 %/yr (p< 0.05) before 2013 and
5.19 %/yr (p < 0.05) after 2013. The extent of O3-affected areas was
more stable, averaging 94.7 % and 95.0 % between 2000 and 2021 for

Fig. 5. Time series of monthly population-weighted surface O3 anomalies and trend lines from 2000 to 2021 across (a) mainland China and (b) the Beijing-Tianjin-
Hebei (BTH) region, (c) the Yangtze River Delta (YRD) region, (d) the Pearl River Delta (PRD) region, (e) “2 + 26” cities, and (f) the North China Plain (NCP) region.
The green dotted line (value in green) represents the trend (slope of the fitted line from linear regression) over the 22-year period, while other colors (i.e., blue,
yellow, and red) represent trends in separate periods determined by the breakpoint detection approach (*: p < 0.05, **: p < 0.01, ***: p < 0.001). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the L-IT2 and L-AQG levels, respectively. Furthermore, the number of
people affected by long-term O3 exposure paralleled the changes in the
polluted area for the three recommended standards, underscoring the
severity of extreme pollution events in the southern regions of mainland
China.

3.3.2. Short-term O3 exposure risk
Our gapless ChinaHighO3 dataset also enables us to assess the health

risks and trends in exposure to short-termO3 pollution at each 1-km2 grid
across mainland China, in accordance with the WHO recommended
daily standards (Fig. 8). About 86.9% of the populated area was exposed
to severe O3 pollution (MDA8 O3 > S-IT1) for at least one day each year
during the 22-year average, with a particularly pronounced impact in
the NCP (> 20 %). The percentage of populated areas exposed to
pollution showed a notable increase according to both S-IT2 and S-AQG
standards, covering almost all inhabited regions in mainland China
(~99.8 %) (top panels, Fig. 8). Note that the maximum proportion of
polluted days within a 1-km2 grid is 40 % for the S-IT2 level, reaching up
to 60 % for the S-AQG level, notably in the southern regions of China.
Temporally, from 2000 to 2021, mainland China experienced a notable
rise in the number of days when O3 pollution in populated areas
exceeded recommended levels (bottom panels, Fig. 8), with the most
pronounced increase noted in the NCP, followed by southern China.
Concerning the S-IT1 level, the magnitudes of the trends across the en-
tirety of eastern China varied little, with ~91.4 % of populated areas
displaying a positive trend. Trends for the more stringent S-IT2 and S-
AQG criteria show nearly identical patterns, with the proportions of
areas of both increasing up to ~97.3 % and many areas experiencing a
maximum increase exceeding 2.4 % per year. However, areas that
passed the significance test are much smaller in comparison to S-IT1 due
to the sustained high proportion of days exceeding S-IT2 and S-AQG
criteria throughout the years. Furthermore, over 98 % of 367 Chinese
cities experienced ambient O3 pollution (MDA8 O3 > 100 μg/m3) for at

least one day since 2017, indicating a persistent and widespread O3
pollution problem.

Fig. 9 illustrates the annual percentage of areas exceeding the WHO
short-term recommended standards for one day, one week, one month,
and one quarter of a year in mainland China and different regions for
each year during the past two decades. For S-LT1, the occurrence of
severe O3 polluted days in mainland China stayed below one month.
However, in recent years, starting from 2017, there has been a contin-
uous expansion in regions experiencing severe O3 pollution for at least
one day (4.63 %/yr, p = 0.07) and one week (3.11 %/yr, p = 0.21). By
contrast, 60 % and 40 % of the BTH region experienced severe O3
pollution for at least one day and one week, respectively, since 2000.
Since 2016, more than half of the region experienced at least one month
of severe O3 pollution. In the YRD, the same annual increase of ~7.2 %
(p< 0.01) in the percentage of areas where daily MDA8 exceeds 160 μg/
m3 for at least one day and one week was experienced since 2014. This
scenario escalated starting in 2017, with over 50 % of the YRD region
consistently facing exposure to severe O3 pollution levels for at least one
month. The PRD region had notable interannual variations, with the
proportion of area experiencing at least one day (week) exceeding the S-
IT1 level, ranging from 22.4 % (1.7 %) in 2000 to 99.0 % (94.1 %) in
2021.

The high daily O3 pollution risk in mainland China, combined with
the close thresholds of the two short-term air quality standards (i.e., S-
IT2: daily = 120 μg/m3, and S-AQG: daily = 100 μg/m3), results in
minimal differences between them. From 2000 to 2021, the average
percentage of mainland China’s areas exceeding these standards reached
88.4 %, 78.1 %, and 53.4 % for at least one day, one week, and one
month of the year, respectively. Additionally, the proportion of areas
exceeding these standards for at least 30 days remained below 50 %
before 2015 but has since significantly increased (6.59 %/yr, p < 0.05).
At the regional scale, particularly in BTH, O3 exposure risks have
remained high over time, with equal proportions of 99.3 %, 99.2 %, and

Fig. 6. Comparison of peak-season surface O3 concentrations between urban (yellow boxes) and rural (blue boxes) areas during different periods (2000–2021,
2000–2015, and 2016–2021) in (a) mainland China and (b-d) three key regions. In each box, the dot signifies the average, and the lower, middle, and upper
horizontal lines represent the 25th percentile, median value, and 75th percentile, respectively. Relative (absolute) differences between urban and rural areas are
indicated by red (orange) numbers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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94.3 % of the region exceeding the S-AQG and S-IT2 levels for at least
one day, one week, and one month, respectively. Since 2016, over 60 %
of the BTH region has experienced high O3 pollution levels (> 120 μg/
m3) for a quarter of the year. The YRD region has shown a significant and
substantial upward trend in areas exceeding both the S-AQG and S-IT2
levels, with the same increase in exposure duration [i.e., 0.61 %/yr,
1.09 %/yr, 1.91%/yr, and 2.50%/yr, for one day, one week, onemonth,
and one quarter of the year (p < 0.001)] over the past two decades.
Almost all populated areas in the PRD region exceeded these two stan-
dards for at least one day and one week (average = 99.1 % and 98.7 %,
respectively) from 2000 to 2021. However, the fluctuations in areal
proportions were notably large for at least one month (ranging from
56.7 % to 99.2 %) and especially for a quarter of the year (ranging from
1.1 % to 80.5 %). The year 2019marked the heaviest O3 pollution levels,
with over 93.6 %, 92.6 %, and 80.5 % of the BTH, YRD, and PRD regions
surpassing the S-AQG level for an entire season. This is probably
attributable to the sustained rise in precursor emissions from local and
transported sources, enhancing O3 formation via photochemical re-
actions (Zhang et al., 2023b).

Fig. 10 shows the annual percentage of O3-polluted days in mainland
China and the three typical regions from 2000 to 2021. The national
proportion of polluted days was relatively constant with small fluctua-
tions before 2013, but a notable increase occurred after, particularly for
the S-AQG (average= 43.8 %) and S-IT2 (average= 16.9 %) levels, with
annual growth rates of 3.92 % (p < 0.001) and 3.31 % (p < 0.01),

respectively. Regionally, BTH experienced the highest frequency of O3
pollution over 22 years, with averages of 9.6 %, 29.2 %, and 41.5 % of
days exceeding 160 μg/m3, 120 μg/m3, and 100 μg/m3, respectively.
Notably, BTH O3 pollution underwent a changing point in 2013, with
decreasing O3 before that year, particularly at the S-AQG level (− 0.36
%, p < 0.01) and increasing O3 observed for S-IT1 (1.92 %, p < 0.05), S-
IT2 (1.94 %, p < 0.01), and S-AQG (2.30 %, p< 0.01) levels. In the YRD,
from 2013 to 2021, more significant increases occurred compared to the
BTH and PRD regions, as evidenced by a much larger annual rate of 3.16
%/yr (p < 0.01) and 3.13 %/yr (p < 0.01) for S-AQG and S-IT2 levels,
respectively. The interannual oscillation amplitude in the PRD region
was relatively large (except for the S-IT1 level), revealing the frequent
occurrence of extreme pollution events. There was an overall declining
trend until 2016, followed by sharp reversals with significant increases
(S-IT2: 2.26 %/yr, p = 0.15; S-AQG: 3.55 %/yr, p < 0.05).

3.4. Mortality burden attributable to surface O3 pollution

3.4.1. Long-term O3 changes and their impact on public health
Studies on the impact of long-term O3 exposure on public health are

limited to under a decade due to the lack of long-term surface O3 data.
Here, we first calculated the annual mortality burden exposure to peak-
season O3 pollution from 2000 to 2021 for mainland China and each
individual province (Fig. 11). Shandong province recorded the highest
accumulated premature deaths during the 22-year period [~164.5 (95

Fig. 7. Percentage of areas exceeding the WHO-recommended long-term air quality standards and percentage of the population experiencing these high pollution
levels. The red, orange, and blue lines depict annual peak-season surface O3 concentrations exceeding 60, 70, and 100 μg/m3, respectively. The vertical gray line
marks the year 2013, with numbers preceding it representing trends from 2000 to 2012 and those following it representing trends from 2013 to 2021. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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% CI: 80.2–231.3) thousand)], followed by Henan [~124.6 (95 % CI:
60.3–176.3) thousand)], Hebei [~117.5 (95 % CI: 57.2–165.2) thou-
sand)], and Jiangsu [~115.2 (95 % CI: 55.7–162.5) thousand)] prov-
inces (Fig. 11a). Sichuan, one of the most populous provinces in
mainland China, has been strongly affected by long-term O3 pollution,
leading to an estimated total of 68.0 (95 % CI: 32.5–97.3) thousand
deaths over the past two decades. Smaller maps surrounding Fig. 11
show annual changes in fatalities at the provincial level for each year of
the last two decades. From 2000 to 2013, there was a slight declining
trend in premature deaths in most eastern provinces. However, over the
subsequent eight years, a sharp increase occurred, with the year 2019
registering the largest health burden of 93.4 (95 % CI: 45.1–131.4)
thousand attributed to O3 exposure (population-weighted O3 concen-
tration = 127.3 μg/m3). Regarding provincial outcomes, Shandong
(ranging from 5.1 to 14.2 thousand), Henan (5.0–13.9 thousand), Hebei
(4.0–11.1 thousand), and Jiangsu (3.3–9.9 thousand) provinces consis-
tently reported the highest number of lives lost during the past 22 years
due to O3 exposure. By contrast, western provinces (i.e., Xizang, Qing-
hai, and Yunnan) experienced fewer losses of life. This difference could
be linked to more rapid urbanization, as evidenced by the increasing
number of urban areas in most Chinese provinces over the past two
decades (Fig. S6). This trend is particularly pronounced in the eastern
coastal provinces, where growth rates range from 0.13‰ to 1.18‰ per
year, contributing to increased anthropogenic emissions of O3 pre-
cursors. Overall, the increase in surface O3 concentration has resulted in
an uptick in the annual count of premature deaths by 953 (95 % CI:
486–1288, p < 0.05) people for the period 2000–2021 (Fig. 11b-c).
Additionally, a notable surge has occurred since 2015, particularly be-
tween the short period from 2016 to 2019. This increase [13.9 (95 % CI:
5.5–15.8) thousand people per year, p < 0.01] corresponds to the most
substantial population-weighted O3 rise (5.9 μg/m3 per year, p < 0.01)
nationwide. Since then, the related deaths have steadily decreased to
78.6 (95 % CI: 38.2–111.0) thousand in 2021. Nevertheless, the total
burden remains higher than pre-2019 levels. Note that higher temper-
atures during peak O3 periods may also influence the associated

mortality burden due to the combined health effects of O3 and heat
waves (Xu et al., 2023, 2024a).

3.4.2. Short-term O3 changes on public health
Fig. 12 illustrates the time series of annual accumulated mortality

from all days in a year resulting from short-termO3 exposure in mainland
China and typical regions, i.e., BTH, YRD, and PRD, from 2000 to 2021,
using our daily O3 concentration dataset. Short-term O3 exposure has
garnered widespread attention, primarily due to the frequent occurrence
of extreme pollution events in local regions. Between 2000 and 2013,
mainland China witnessed a gradual increase in the number of prema-
ture deaths resulting from short-term O3 exposure, with a rise of 157
people per year (95 % CI: 85–228, p < 0.01). Subsequently, the rate of
increase sharply accelerated to 2.5 (95 % CI: 1.4–3.7) thousand per year
(p < 0.01). At the regional scale, all areas have shown a continuous
upward trend in short-term O3-attributed premature deaths since 2000.
However, trends in previous years remained relatively stable before
2013, particularly for the BTH region [16 (95 % CI: 11–29) people per
year, p < 0.05; Fig. 12b], contrary to the PRD region (Fig. 12d), which
had the most significant increase, i.e., 44 (95 % CI: 27–55) people per
year (p < 0.001). The death rate has significantly increased in recent
years, especially in the YRD region [483 (95 % CI: 282–654) people per
year, p < 0.01; Fig. 12c], reaching its peak in 2019, with a total of 5.3
(95 % CI: 2.9–7.7) thousand deaths for the BTH region, 7.9 (95 % CI:
4.2–11.4) thousand deaths for the YRD region, and 1.3 (95 % CI:
0.7–1.8) thousand deaths for the PRD region. Sichuan Basin has also
exhibited a significant increasing mortality trend associated with daily
O3 pollution, with an increase of 130 (95 % CI: 63–184) people per year
(p < 0.05) during 2013–2021, and experienced the highest life loss in
2019 [~2.3 (95 % CI: 1.2–3.1) thousand deaths]. Note that there is a
great difference, ~2–3 times for mainland China, in mortality figures
calculated from peak-season values compared to results accumulated
over all days of the year. This discrepancy arises from the exposure-
response functions used. The former is adopted from the worldwide
model (GBD 2019 Risk Factors Collaborators, 2020) and may vary

Fig. 8. Annual mean percentage and trend of days exceeding the WHO-recommended short-term air quality standards (S-IT1: daily MDA8 O3 = 160 μg/m3, S-IT2:
daily MDA8 O3 = 120 μg/m3, and S-AQG: daily MDA8 O3 = 100 μg/m3) from 2000 to 2021.

Z. Yang et al. Remote Sensing of Environment 317 (2025) 114459 

13 



greatly across the country and regions (Wei et al., 2023b). The latter
uses large cohort data specific to the country.

3.5. Discussion

3.5.1. Impacts of spatial resolution on air quality and health
The spatial resolution of the air quality dataset can influence both the

accuracy and effectiveness of assessments of air pollution and mortality
burden (Wei et al., 2023b). We thus evaluated differences by comparing
surface O3 polluted levels (Fig. S6) and attributed premature deaths
using data at a resolution of 1 km and resampling to a 10-km resolution.
On specific days, our 1-km daily O3 data more accurately identifies
important differences in O3 pollution at the city level, offering more
detailed information and showing distinct gradient changes of O3
pollution within cities. For example, when using Gaussian curves to fit
the frequency distributions in the “2+ 26” cities, the 1-km daily O3 data
consistently has higher maximum values in comparison to the coarser-
resolution dataset. Peak values can vary greatly, with a relative differ-
ence of even up to 17.8 %. This difference is particularly noticeable in
key metropolitan clusters, such as the YRD and PRD regions. Addition-
ally, 1-km data also offer a broader spatial coverage around inland
rivers, lakes, and land-ocean interfaces. In general, data with the coarse
10-km resolution could underestimate national daily O3 pollution levels
by ~4.8 % compared to 1-km data. Regarding exposure conditions, a
small average underestimation of ~1.5 % at the national scale over the
long-term perspective when using the coarser 10-km O3 data is
observed. However, with the increasing disparity in population-

weighted O3 concentrations, differences in the number of premature
deaths have grown even larger (Fig. 11b): Every 1 % increase in this
disparity resulted in a 1.3 % (before 2013) or 3.9 % (after 2013) dif-
ference in the number of deaths due to O3 pollution. In particular, the
death-rate trend could be severely underestimated by 13.2 % for long-
term surface O3 exposure. This underestimation becomes even more
pronounced for the short-term life loss rate, reaching 19.7 % in main-
land China (Fig. 12). This is further evidenced by the substantial un-
derestimations in key urban regions, i.e., YRD (51.4 %), BTH (11.3 %),
and PRD (20.5 %), highlighting the importance of higher spatial reso-
lution data for assessing short-term and local (especially urban) air
quality and public health.

3.5.2. Comparison with related studies
Many studies are dedicated to estimating surface O3 concentrations

from space. However, few have focused on reconstructing long-term (≥
5 years) data records in China (Table S2). Previous studies have gener-
ally covered a limited time duration, typically around 5–10 years,
encountering limitations in terms of coarse spatial resolutions (greater
than 5 km or 10 km) or spatial missing values (Chen et al., 2023; Liu
et al., 2020; Mu et al., 2023; Wang et al., 2020b; Wei et al., 2022a; Xue
et al., 2020; Zhu et al., 2022), restricting their applicability, particularly
at urban scales. To overcome these limitations, we made important
improvements by incorporating two main predictors—all-sky solar
shortwave radiation and surface temperature—from the photochemical
reaction perspective of O3 generation. Our new approach has extended
the data records back to 2000 (covering a 22-year period) and enhanced

Fig. 9. Percentage of areas of mainland China and different regions (BTH, YRD, and PRD) surpassing the WHO-recommended short-term air quality standards for at
least 1 day, 1 week (7 days), 1 month (30 days), and one quarter (90 days) of a year in each year from 2000 to 2021.
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the spatial resolution to 1 km, surpassing the resolutions used in other
studies by 5–10 times. It also effectively mitigates cloud-contamination
challenges, achieving complete 100 % spatial coverage for daily biases.
Regarding overall accuracy, our model (CV-R2 = 0.89, RMSE = 15.77
μg/m3) outperforms most models developed in most previous studies,
such as those using the Nested Air Quality Prediction Modelling System
(NAQPMS) atmospheric chemical model (Wang et al., 2020b) and ma-
chine- or deep-learning models, including the data-fusion model (CV-R2

= 0.70, RMSE = 26.00 μg/m3) (Xue et al., 2020), XGBoost (CV-R2 =

0.76, RMSE = 21.47 μg/m3) (Liu et al., 2020), RF (CV-R2 = 0.87, RMSE
= 13.03 μg/m3) (Zhu et al., 2022), and 3D-CNN (CV-R2 = 0.88, RMSE =

15.65 μg/m3) (Mu et al., 2023), improving the CV-R2 by ~6.8 % and
decreasing the RMSE by ~1.9 %. To date, we offer the longest-term
coverage (2000 to the present), highest spatial resolution (1 km), and
high-quality daily record of surface MDA8 O3 concentration dataset for
mainland China (e.g., ChinaHighO3).

3.5.3. Successful applications
The ChinaHighO3 dataset has been accessible to the public since

December 2020 and successfully applied in various fields, including the
environment and climate [e.g., investigating ambient O3 drivers (Lin
et al., 2022), farmland mitigation (He et al., 2022b), air pollution
(Cheng et al., 2023; Yang et al., 2024), and extreme weather events (Xia
et al., 2022; Xu et al., 2023)], the economy [e.g., assessing economic
losses caused by O3 (Ma et al., 2023)] and the correlation between air
quality and high-speed rail (Huang et al., 2023). Notably, a large

number of studies in the realm of public health have been conducted,
revealing strong associations between long-term and especially short-
term exposures to surface O3 pollution and a variety of human dis-
eases, including lung cancer (Guo et al., 2021), stroke (He et al., 2022a;
Li et al., 2023a; Wang et al., 2022a; Xu et al., 2022d; Wu et al., 2022),
aigina (Xu et al., 2024), muscle (Zhang et al., 2023a), tuberculosis (Li
et al., 2023b), kidney/renal function (Cai et al., 2023b; Li et al., 2022a),
diabetes (Hu et al., 2023; Mei et al., 2023; Wang et al., 2022d), death
related to dementia (Liu et al., 2022b), cardiovascular disease (Li et al.,
2023c; Lv et al., 2023; Xu et al., 2022a; Xu et al., 2022c; Xu et al., 2024a;
Tian et al., 2023), chronic ischemic heart disease (Chen et al., 2022a),
risk of allosteric load (Xu et al., 2022b), risk of overweight (Han et al.,
2023), sleep patterns and quality (Hu et al., 2022; Wang et al., 2022b),
metabolic syndrome (Han et al., 2022), sperm quality (Cai et al., 2023a;
Zhang et al., 2023c), hepatic enzyme levels (Li et al., 2022b), adults’
dislipidemia (Pan et al., 2023), olderly’s cognitive impairement (Zhou
et al., 2023), hypertension and blood pressure (Niu et al., 2022a), acute
myocardial infarction mortalities (Cheng et al., 2023), outpatient visits
for anxiety disorders (Xu et al., 2024b), pregnancy birth outcomes
(Zhang et al., 2024), as well as attributable mortalities (Liu et al., 2024).
These successful applications both confirm and demonstrate the rele-
vance of our dataset in facilitating present and future assessments across
various domains. This improved dataset at a 1-km resolution allows for a
more in-depth analysis of surface O3 concentrations at finer scales
(urban and suburban) and over an extended temporal period.

Fig. 10. Time series of percentage of surface-O3-polluted days exceeding the WHO-recommended short-term S-IT1 (blue lines), S-IT2 (orange lines), and S-AQG (red
lines) levels for each year from 2000 to 2021 in (a) mainland China, and the (b) BTH, (c) YRD, and (d) PRD regions. The vertical gray dashed line represents the year
2013, and numbers represent the trends for the periods 2000–2012 and 2013–2021 (*: p < 0.05, **: p < 0.01, ***: p < 0.001). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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4. Summary and conclusions

A high spatial resolution and a long time series of ground-level O3
data are crucial for studying environmental and health-related aspects.
Here, we developed the 4D-STDF model to estimate two decades (2000
to the present) of 1-km surface O3 concentrations covering mainland
China. Our approach involved main predictors (satellite-derived 1-km
DSR and LST retrievals), integrating national surface O3 observations,
atmospheric reanalysis data, satellite remote sensing products, and an
emission inventory. Ten-fold cross-validation results demonstrate high
overall accuracy (spatial predictive ability), with sample-based (station-
based) CV-R2, RMSE, and MAE values of 0.89 (0.84), 15.77 (18.74) μg/
m3, and 10.48 (12.36) μg/m3, respectively. To assess the quality of
historical data records, especially before 2013, we conducted indepen-
dent validations against TOAR measurements, revealing strong corre-
lations at daily (R = 0.80), monthly (R = 0.89), and annual (R = 0.90)
levels. Our study outperformed previous studies in terms of time span
covered, spatiotemporal resolution, and spatial coverage, also exhibit-
ing superior data quality, with an enhanced CV-R2 by 6.8 % and a
reduced RMSE by 1.9 %. The excellent performance of this product fa-
cilitates comprehensive long- and short-term trend analyses of air
pollution, particularly the O3 exposure risk and health burden at finer
scales (i.e., at urban and suburban scales) in mainland China.

Leveraging the distinct benefits offered by the ChinaHighO3 dataset,
our study revealed a dynamic and diverse pattern in national, regional,
and city-scale surface O3 levels over the past 22 years. Surface O3 levels
in mainland China remained stable until around 2015, followed by a
sharp increase of 4.36 μg/m3 per year (p < 0.001), peaking in 2019 and
subsequently declining, especially in the BTH region (− 6.71 μg/m3/yr,
p < 0.01). In the PRD region, surface O3 levels have continuously
increased since 2016, with a sharp rise during the period 2016–2019

(6.88 μg/m3/yr, p < 0.001). Throughout the peak season, surface O3
concentrations varied between urban and rural areas, with an average
relative difference reaching 12.2 % on a national scale. Moreover, since
2015, mainland China has had a substantial increase in this urban-rural
disparity, particularly in the BTH and PRD regions, attributed to the
rapid rise in O3 levels and urbanization rates. Surface O3 pollution ap-
pears to be mostly acceptable under the WHO-recommended long-term
(short-term) interim target 1, but 45.0 % (16.9 %) and 45.4 % (43.8 %)
of the areas (days) exceeded the interim target 2 and AQG levels in
mainland China during the period 2000–2021. Furthermore, since 2013,
there has been a substantial growth in the proportion of days exceeding
the S-AQG across mainland China and three key urban regions (i.e.,
BTH, YRD, and PRD), with growth rates of 3.9, 2.3, 3.2, and 2.5 % per
year (p < 0.01), respectively. Contributing to the increasing severe O3
exposure risk in mainland China, there were 1308 (95 % CI: 631–1856)
thousand mortalities due to long-term O3 exposure during the total 22-
year period, with an annual increasing rate of 953 (95 % CI: 486–1288)
deaths per year. The trends in short-term O3-related mortality in
mainland China and typical regions like the BTH and the YRD declined
before 2013 but subsequently increased at annual trends of ~2526 (95
% CI: 1373–3672, p < 0.001), 298 (95 % CI: 153–409, p < 0.001), and
483 (95 % CI: 282–654, p < 0.001) thousand per year, respectively. We
also determined that when compared with 1-km-resolution data, coarse-
resolution (10 km) data could underestimate surface O3 levels and
death-rate trends attributed to long-term (short-term) O3 exposure by
~1.5 % (4.8 %) and ~13.2 % (19.7 %), respectively. Consequently, our
ChinaHighO3 (1-km daily gapless) dataset is highly useful for under-
standing long- and short-term O3 air quality and health issues at medium
to small scales, particularly in urban areas.

Fig. 11. Spatial distributions of the province-level cumulative number of mortalities attributed to long-term surface O3 exposure in mainland China (a) for the entire
period and each year from 2000 to 2021 (surrounding smaller maps). Panels (b) and (c) show the time series of annual cumulative deaths and population-weighted
(PW) surface O3 concentration from 2000 to 2021. The solid red (black) lines represent the results calculated using the data with a resolution of 1 km (10 km), and
the dashed red (black) lines indicate the linear trends, with shaded areas indicating the 95 % confidence interval. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Z. Yang et al. Remote Sensing of Environment 317 (2025) 114459 

16 



CRediT authorship contribution statement

Zeyu Yang: Writing – original draft, Validation, Formal analysis,
Data curation. Zhanqing Li: Writing – review & editing, Methodology,
Investigation, Funding acquisition, Conceptualization. Fan Cheng: Data
curation. Qiancheng Lv: Data curation. Ke Li: Writing – review &
editing. Tao Zhang: Data curation. Yuyu Zhou: Data curation. Bin
Zhao: Data curation.Wenhao Xue: Data curation. Jing Wei: Writing –
review & editing, Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no conflict of interest.

Data availability

The ChinaHighO3 dataset is available at https://zenodo.
org/doi/10.5281/zenodo.10477125.

Acknowledgments

This work was supported by the National Natural Science Foundation
of China (42030606 and 42207541).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.rse.2024.114459.

References
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