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Texts 21 
 22 
Text S1. Building XGB10 and XGB7 23 

To determine the best combination of the hyperparameters in XGB10 and XGB7, the 24 
optimization space of six key parameters (learning_rate, n_estimators, subsample, 25 
colsample_bytree, and colsample_bylevel) was explored using a Bayesian optimization technique 26 
(Snoek et al., 2012).  This technique is highly efficient for parameter tuning, allowing finding the 27 
maximum value of a target function in as few iterations as possible based on Bayesian inference 28 
and the Gaussian process. To avoid overfitting on the training set, we used 5-fold cross-validation 29 
in each iteration during the optimization processes. The mean squared error (MSE) for the 30 
validation set reached the minimum, usually within 10 iterations. The investigated ranges of each 31 
parameter for hyperparameter optimization in XGB10 and XGB7 were summarized in Table S2. 32 
To address the uncertainties caused by random seeds in optimization processes, we performed 33 
Bayesian optimization ten times. This resulted in ten optimized parameter sets, creating ten 34 
ensemble members each for XGB10 and XGB7, as summarized in Tables S3 and S4, respectively. 35 
The ensemble-mean prediction results and absolute SHAP values from each model were used for 36 
evaluation in this study. 37 
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Text S2. SHAP Explainability analysis 47 
SHAP (SHapley Additive exPlanations; Lundberg et al., 2018; Lundberg & Lee, 2017) is a 48 

high-fidelity and unified approach to exploring and interpreting the tree-based ML model (e.g., 49 
XGBoost) behavior. It explains a model’s individual output as a sum of the contributions of each 50 
feature (or predictor) and the mean predicted value through an explanation model, which can be 51 
expressed as: 52 

𝑦𝑦 = 𝑦𝑦� + ∑ 𝜙𝜙𝑖𝑖𝑖𝑖 ,       (1) 53 

where y is the final prediction for one case, 𝑦𝑦� is the average prediction across all cases, and 𝜙𝜙𝑖𝑖 is 54 
the contribution of the 𝑖𝑖-th feature to the prediction for this case (called SHAP values). Based on 55 
cooperative game theory, Lundberg & Lee, (2017) first proposed the KernelSHAP algorithm to 56 
calculate SHAP values by sampling the predictions of a machine learning model by replacing 57 
feature values with random values from the feature distribution. But KernalSHAP is 58 
computationally slow and ignores feature dependence. A more efficient and exact algorithm for 59 
tree ensemble models (TreeSHAP) was developed using the conditional expectation to estimate 60 
feature effects with no feature independence assumption required (Lundberg et al., 2018, 2020). 61 
The features with larger absolute SHAP values contribute more to a prediction than those with 62 
smaller values. 63 
 64 
 65 
 66 
  67 
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Tables: 68 
 69 

Table S1. Summary of meteorological factors used as predictors in XGB10 and XGB7 70 

Model Predictor Description 

XGB10 

𝜃𝜃1000, 𝜃𝜃850, 𝜃𝜃700 Potential temperature at 1000, 850, and 700 hPa (K) 
RH1000, RH850, RH700 Relative humidity at 1000, 850, and 700 hPa (%) 
U1000 Horizontal wind speed at 1000 hPa (m/s) 
𝜔𝜔700 Vertical velocity at 700 hPa (Pa/s) 
LHF Latent heat flux (W/m2) 
PWV Column-integrated precipitable water vapor (kg/m2) 

XGB7 

RH700, U1000, 𝜔𝜔700, LHF Same as those predictors used in XGB10 
LTS Lower-tropospheric stability (𝜃𝜃700 − 𝜃𝜃1000) (K) 

Δ𝑞𝑞 The moisture contrast between the boundary layer and 
free troposphere (𝑞𝑞1000 − 𝑞𝑞700) (g/kg) 

Tadv Horizontal temperature advection (K/day) 
 71 
 72 
  73 
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 74 
Table S2. Investigated range of hyperparameters for XGB10 and XGB7 75 

Parameter Investigated range 

max_depth 3-7 

n_estimators 100-1000 

learning_rate 0.01-1.0 

subsample 0.5-1.0 

colsample_bytree 0.5-1.0 

cosample_bylevel 0.5-1.0 

 76 
 77 
 78 
  79 
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 80 
Table S3. Optimized hyperparameters and training/test errors for ten XGB10 members 81 

M
SE

 fo
r 

te
st

 se
t 

0.
07

39
 

0.
07

40
 

0.
07

41
 

0.
07

37
 

0.
07

37
 

0.
07

38
 

0.
07

41
 

0.
07

37
 

0.
07

37
 

0.
07

42
 

M
SE

 fo
r 

tr
ai

nn
in

g 
se

t 

0.
07

01
 

0.
07

02
 

0.
07

03
 

0.
06

99
 

0.
06

99
 

0.
07

00
 

0.
07

04
 

0.
06

99
 

0.
06

99
 

0.
07

04
 

su
bs

am
pl

e 

0.
99

90
 

0.
71

31
 

0.
93

72
 

0.
77

52
 

0.
93

42
 

0.
75

62
 

0.
60

46
 

0.
73

14
 

0.
92

43
 

0.
85

58
 

n_
es

tim
at

or
s 

85
7 

91
4 

59
8 

84
4 

86
1 

73
7 

60
6 

92
2 

90
4 

62
1 

m
ax

_d
ep

th
 

6 6 6 6 6 6 6 6 6 6 

le
ar

ni
ng

_r
at

e 

0.
61

29
 

0.
51

22
 

0.
69

60
 

0.
33

87
 

0.
27

30
 

0.
45

96
 

0.
23

92
 

0.
34

53
 

0.
34

04
 

0.
55

91
 

co
ls

am
pl

e
_b

yt
re

e 

0.
78

90
 

0.
58

53
 

0.
93

09
 

0.
92

63
 

0.
98

33
 

0.
82

92
 

0.
77

18
 

0.
77

08
 

0.
96

62
 

0.
73

14
 

co
ls

am
pl

e
_b

yl
ev

el
 

0.
68

00
 

0.
73

47
 

0.
85

88
 

0.
72

95
 

0.
99

66
 

0.
77

42
 

0.
86

66
 

0.
82

08
 

0.
71

25
 

0.
54

88
 

M
em

be
r 

ID
 

01
 

02
 

03
 

04
 

05
 

06
 

07
 

08
 

09
 

10
 

 82 



 7 

 83 
 84 

Table S4. Optimized hyperparameters and training/test errors for ten XGB7 members 85 
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 86 
 87 
Figures: 88 
 89 
 90 

 91 
Figure S1. Comparison of near-surface zonal wind speeds between model nudging experiment 92 

outputs and ERA5 regarding three metrics: the mean bias, root mean squared error (RMSE), and 93 
correlation coefficients (r) (from top to bottom rows, respectively). The first column shows the 94 

comparison for CAM6 outputs, with the second column for CAM5 outputs. 95 
 96 
 97 
  98 
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 99 
Figure S2. Same as Figure S1 but for comparisons between non-COSP low-cloud fraction (LCF) 100 

and COSP-enabled LCF in CAM6 and CAM5. 101 
 102 
 103 
 104 
  105 
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 106 
Figure S3. Starting points of trajectories sampled over the four selected regions where the 107 

stratocumulus-to-cumulus transition dominates, following Eastman & Wood (2018): Northeast 108 
Pacific (-155 to -115oE, 15 to 30oN), Southeast Pacific (-105 to -70oE, -30 to -5oN), Southeast 109 

Atlantic (-15 to 15oE, -30 to -5oN), and East Indian (62.5 to 112.5oE, -30 to -20oN).  110 
 111 
 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
  124 
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 125 
Figure S4. Subsets of forward trajectories (36 hours) over the four subtropical regions starting at 126 

6:00 p.m. on March 31, 2004. The black points denote the starting points. 127 
 128 
 129 
  130 
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