2 Geophysical Research Letters
3 Supporting Information for
4 Improving low-cloud fraction prediction through machine learning
5 Haipeng Zhang', Youtong Zheng**, and Zhanging Li'*?
6 'Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
7 ’Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
8 ’Department of Atmospheric and Earth Science, University of Houston, Houston, TX, USA
9 *Institute of Climate and Atmospheric Science, University of Houston, Houston, TX, USA
10
11

12 Contents of this file

13

14

15 Texts S1 to S2
16 Tables S1 to S4
17 Figures S1 to S4
18

19

20



21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46

Texts

Text S1. Building XGB10 and XGB7

To determine the best combination of the hyperparameters in XGB10 and XGB7, the
optimization space of six key parameters (learning rate, n_estimators, subsample,
colsample bytree, and colsample bylevel) was explored using a Bayesian optimization technique
(Snoek et al., 2012). This technique is highly efficient for parameter tuning, allowing finding the
maximum value of a target function in as few iterations as possible based on Bayesian inference
and the Gaussian process. To avoid overfitting on the training set, we used 5-fold cross-validation
in each iteration during the optimization processes. The mean squared error (MSE) for the
validation set reached the minimum, usually within 10 iterations. The investigated ranges of each
parameter for hyperparameter optimization in XGB10 and XGB7 were summarized in Table S2.
To address the uncertainties caused by random seeds in optimization processes, we performed
Bayesian optimization ten times. This resulted in ten optimized parameter sets, creating ten
ensemble members each for XGB10 and XGB7, as summarized in Tables S3 and S4, respectively.
The ensemble-mean prediction results and absolute SHAP values from each model were used for
evaluation in this study.
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Text S2. SHAP Explainability analysis

SHAP (SHapley Additive exPlanations; Lundberg et al., 2018; Lundberg & Lee, 2017) is a
high-fidelity and unified approach to exploring and interpreting the tree-based ML model (e.g.,
XGBoost) behavior. It explains a model’s individual output as a sum of the contributions of each
feature (or predictor) and the mean predicted value through an explanation model, which can be
expressed as:

y=y+Xidi, (D

where y is the final prediction for one case, y is the average prediction across all cases, and ¢; is
the contribution of the i-th feature to the prediction for this case (called SHAP values). Based on
cooperative game theory, Lundberg & Lee, (2017) first proposed the KernelSHAP algorithm to
calculate SHAP values by sampling the predictions of a machine learning model by replacing
feature values with random values from the feature distribution. But KernalSHAP is
computationally slow and ignores feature dependence. A more efficient and exact algorithm for
tree ensemble models (TreeSHAP) was developed using the conditional expectation to estimate
feature effects with no feature independence assumption required (Lundberg et al., 2018, 2020).
The features with larger absolute SHAP values contribute more to a prediction than those with
smaller values.
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Tables:

Table S1. Summary of meteorological factors used as predictors in XGB10 and XGB7

Model Predictor Description

01000 9850> 8700 Potential temperature at 1000, 850, and 700 hPa (K)

RH; 00, RHgso, RH7q0 Relative humidity at 1000, 850, and 700 hPa (%)
XGB10 U1000 Horizontal wind speed at 1000 hPa (m/s)

W700 Vertical velocity at 700 hPa (Pa/s)

LHF Latent heat flux (W/m?)

PWV Column-integrated precipitable water vapor (kg/m?)

RH-00, U1000> ®W700, LHF Same as those predictors used in XGB10

LTS Lower-tropospheric stability (6799 — @1900) (K)
XGB7 The moisture contrast between the boundary layer and

Aq
Tadv

free troposphere (q1000 — q700) (g/kg)
Horizontal temperature advection (K/day)
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Table S2. Investigated range of hyperparameters for XGB10 and XGB7

Parameter Investigated range
max_depth 3-7

n_estimators 100-1000
learning_rate 0.01-1.0
subsample 0.5-1.0

colsample bytree 0.5-1.0

cosample bylevel 0.5-1.0
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Table S3. Optimized hyperparameters and training/test errors for ten XGB10 members
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Table S4. Optimized hyperparameters and training/test errors for ten XGB7 members
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Figures:
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Figure S1. Comparison of near-surface zonal wind speeds between model nudging experiment
outputs and ERAS regarding three metrics: the mean bias, root mean squared error (RMSE), and
correlation coefficients (7) (from top to bottom rows, respectively). The first column shows the
comparison for CAM6 outputs, with the second column for CAMS outputs.
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Figure S2. Same as Figure S1 but for comparisons between non-COSP low-cloud fraction (LCF)
and COSP-enabled LCF in CAM6 and CAMS.
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Figure S3. Starting points of trajectories sampled over the four selected regions where the
stratocumulus-to-cumulus transition dominates, following Eastman & Wood (2018): Northeast
Pacific (-155 to -115°E, 15 to 30°N), Southeast Pacific (-105 to -70°E, -30 to -5°N), Southeast
Atlantic (-15 to 15°E, -30 to -5°N), and East Indian (62.5 to 112.5°E, -30 to -20°N).
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Figure S4. Subsets of forward trajectories (36 hours) over the four subtropical regions starting at
6:00 p.m. on March 31, 2004. The black points denote the starting points.
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