AGU PUBLICATIONS

1	
2	Geophysical Research Letters
3	Supporting Information for
4	Improving low-cloud fraction prediction through machine learning
5	Haipeng Zhang ^{1,2} , Youtong Zheng ^{3,4} , and Zhanqing Li ^{1,2}
6	¹ Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
7	² Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
8	³ Department of Atmospheric and Earth Science, University of Houston, Houston, TX, USA
9	⁴ Institute of Climate and Atmospheric Science, University of Houston, Houston, TX, USA
10	
11	
12 13 14	Contents of this file
15	Texts S1 to S2
16	Tables S1 to S4
17	Figures S1 to S4
18	
19	
20	

- 21 Texts
- 22

23 Text S1. Building XGB10 and XGB7

24 To determine the best combination of the hyperparameters in XGB10 and XGB7, the 25 optimization space of six key parameters (learning rate, n estimators, subsample, 26 colsample bytree, and colsample bylevel) was explored using a Bayesian optimization technique 27 (Snoek et al., 2012). This technique is highly efficient for parameter tuning, allowing finding the 28 maximum value of a target function in as few iterations as possible based on Bayesian inference 29 and the Gaussian process. To avoid overfitting on the training set, we used 5-fold cross-validation in each iteration during the optimization processes. The mean squared error (MSE) for the 30 31 validation set reached the minimum, usually within 10 iterations. The investigated ranges of each 32 parameter for hyperparameter optimization in XGB10 and XGB7 were summarized in Table S2. 33 To address the uncertainties caused by random seeds in optimization processes, we performed 34 Bayesian optimization ten times. This resulted in ten optimized parameter sets, creating ten 35 ensemble members each for XGB10 and XGB7, as summarized in Tables S3 and S4, respectively. 36 The ensemble-mean prediction results and absolute SHAP values from each model were used for 37 evaluation in this study. 38 39

- 40
- 41
- 42
- 43
- 44
- 45
- 46

47 Text S2. SHAP Explainability analysis

SHAP (SHapley Additive exPlanations; Lundberg et al., 2018; Lundberg & Lee, 2017) is a
 high-fidelity and unified approach to exploring and interpreting the tree-based ML model (e.g.,
 XGBoost) behavior. It explains a model's individual output as a sum of the contributions of each
 feature (or predictor) and the mean predicted value through an explanation model, which can be
 expressed as:

53

$$y = \bar{y} + \sum_{i} \phi_{i}, \qquad (1)$$

54 where y is the final prediction for one case, \bar{y} is the average prediction across all cases, and ϕ_i is the contribution of the *i*-th feature to the prediction for this case (called SHAP values). Based on 55 56 cooperative game theory, Lundberg & Lee, (2017) first proposed the KernelSHAP algorithm to 57 calculate SHAP values by sampling the predictions of a machine learning model by replacing 58 feature values with random values from the feature distribution. But KernalSHAP is 59 computationally slow and ignores feature dependence. A more efficient and exact algorithm for 60 tree ensemble models (TreeSHAP) was developed using the conditional expectation to estimate 61 feature effects with no feature independence assumption required (Lundberg et al., 2018, 2020). 62 The features with larger absolute SHAP values contribute more to a prediction than those with 63 smaller values. 64

64

65

66

69 Tables:

Table S1. Summary of meteorological factors used as predictors in XGB10 and XGB7

Model	Predictor	Description
	$ heta_{1000}, heta_{850}, heta_{700}$	Potential temperature at 1000, 850, and 700 hPa (K)
	RH ₁₀₀₀ , RH ₈₅₀ , RH ₇₀₀	Relative humidity at 1000, 850, and 700 hPa (%)
VCD10	U ₁₀₀₀	Horizontal wind speed at 1000 hPa (m/s)
AGBI0	ω_{700}	Vertical velocity at 700 hPa (Pa/s)
	LHF	Latent heat flux (W/m ²)
	PWV	Column-integrated precipitable water vapor (kg/m ²)
	$RH_{700}, U_{1000}, \omega_{700}, LHF$	Same as those predictors used in XGB10
	LTS	Lower-tropospheric stability $(\theta_{700} - \theta_{1000})$ (K)
XGB7	Δq	The moisture contrast between the boundary layer and free troposphere $(q_{1000} - q_{700})$ (g/kg)
	T_{adv}	Horizontal temperature advection (K/day)

Parameter	Investigated range
max_depth	3-7
n_estimators	100-1000
learning_rate	0.01-1.0
subsample	0.5-1.0
colsample_bytree	0.5-1.0
cosample_bylevel	0.5-1.0

 Table S2. Investigated range of hyperparameters for XGB10 and XGB7

Member ID	colsample _bylevel	colsample _bytree	learning_rate	max_depth	n_estimators	subsample	MSE for trainning set	MSE for test set
01	0.6800	0.7890	0.6129	6	857	0666.0	0.0701	0.0739
02	0.7347	0.5853	0.5122	6	914	0.7131	0.0702	0.0740
03	0.8588	0.9309	0.6960	6	598	0.9372	0.0703	0.0741
04	0.7295	0.9263	0.3387	6	844	0.7752	0.0699	0.0737
05	0.9966	0.9833	0.2730	6	861	0.9342	0.0699	0.0737
90	0.7742	0.8292	0.4596	6	737	0.7562	0.0700	0.0738
07	0.8666	0.7718	0.2392	6	606	0.6046	0.0704	0.0741
08	0.8208	0.7708	0.3453	6	922	0.7314	0.0699	0.0737
60	0.7125	0.9662	0.3404	6	904	0.9243	0.0699	0.0737
10	0.5488	0.7314	0.5591	9	621	0.8558	0.0704	0.0742

Table S3. Optimized hyperparameters and training/test errors for ten XGB10 members

84 85

MSE for test set 0.08420.0843 0.08400.08400.08400.08410.08400.08410.08410.0841trainning set **MSE for** 0.0816 0.0813 0.0813 0.0814 0.0813 0.0815 0.0815 0.0814 0.0813 0.0818 n_estimators subsample 0.7146 0.6013 0.8017 0.94270.5637 0.9218 0.80490.6967 0.85290.7346475 837 999 619 637 994 843 937 871 781 max_depth 9 9 9 9 9 9 Ś 9 9 4 learning_rate 0.43180.42830.6250 0.3785 0.3028 0.74280.8672 0.6579 0.46670.4727colsample _bytree 0.7095 0.9254 0.7625 0.97400.9058 0.79160.9203 0.7859 0.5823 0.5898 colsample bylevel 0.8515 0.6609 0.5205 0.86260.8614 0.9456 0.9559 0.7334 0.96340.9062 Member A 2 02 90 07 0 60 10 0 03 08

Table S4. Optimized hyperparameters and training/test errors for ten XGB7 members

- 88 Figures:

Figure S1. Comparison of near-surface zonal wind speeds between model nudging experiment
 outputs and ERA5 regarding three metrics: the mean bias, root mean squared error (RMSE), and
 correlation coefficients (r) (from top to bottom rows, respectively). The first column shows the
 comparison for CAM6 outputs, with the second column for CAM5 outputs.

Figure S3. Starting points of trajectories sampled over the four selected regions where the stratocumulus-to-cumulus transition dominates, following Eastman & Wood (2018): Northeast Pacific (-155 to -115°E, 15 to 30°N), Southeast Pacific (-105 to -70°E, -30 to -5°N), Southeast Atlantic (-15 to 15°E, -30 to -5°N), and East Indian (62.5 to 112.5°E, -30 to -20°N).

Figure S4. Subsets of forward trajectories (36 hours) over the four subtropical regions starting at
 6:00 p.m. on March 31, 2004. The black points denote the starting points.

131 Reference

- Eastman, R., & Wood, R. (2018). The competing effects of stability and humidity on subtropical
 stratocumulus entrainment and cloud evolution from a Lagrangian perspective. *Journal of the Atmospheric Sciences*, 75(8), 2563–2578. https://doi.org/10.1175/JAS-D-18-0030.1
- Lundberg, S. M., & Lee, S.-I. I. (2017). A unified approach to interpreting model predictions.
- Advances in Neural Information Processing Systems, 2017-Decem(Section 2), 4766–4775.
 Retrieved from http://arxiv.org/abs/1705.07874
- Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2018). Consistent individualized feature attribution
 for tree ensembles. Retrieved from http://arxiv.org/abs/1802.03888
- Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al. (2020). From
 local explanations to global understanding with explainable AI for trees. *Nature Machine Intelligence*, 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9
- Snoek, J., Larochelle, H., Adams, R. P., & Jeffery, C. (2012). Practical Bayesian optimization of
 machine learning algorithms. *Religion and the Arts*, 17(1–2), 57–73.
 https://doi.org/10.48550/ARXIV.1206.2944
- 147
- 148
- 149
- 150
- 151