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A dynamic algorithm for wildfire mapping with NOAA/AVHRR data
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Abstract. A wildfire-mapping algorithm is proposed based on fire dynamics, called the dynamic algorithm. It is
applied to daily NOAA/AVHRR/HRPT data for wildland areas (scrub, chaparral, grassland, marsh, riparian forest,
woodland, rangeland and forests) in California for September and October 1999. Daily AVHRR images acquired
from two successive days are compared for active fire detection and burn scar mapping. The algorithm consists
of four stages: data preparation; hotspot detection; burn scar mapping; and final confirmation of potential burn
scar pixels. Preliminary comparisons between the result mapped by the dynamic algorithm and the fire polygons
collected by the California Department of Forestry and Fire Protection through ground survey indicate that the
algorithm can track burn scars at different developmental stages at a daily level. The comparisons between wildfire
mapping results produced by a modified version of an existing algorithm and the dynamic algorithm also indicate
this point. This is the major contribution of this algorithm to wildfire detection methods. The dynamic algorithm
requires highly precise registration between consecutive images.

Introduction

Quantitative information about the spatio-temporal distribu-
tion of wildfires is indispensable to fire ecology, wildlife
management and atmospheric chemistry and forestry (Levine
1991). Wildfire is an important factor in ecosystem manage-
ment, land cover change and wildlife habitat studies (Levine
1991; Pozo et al. 1997; Rauste et al. 1997; Li et al. 2000a).
Vegetation fires emit substantial amounts of trace gases (e.g.
CO2, CO, CH4, NOX) and particulates into the atmosphere
(Andreae et al. 1996). They affect human health and the
Earth’s radiation budget (Franca et al. 1995). Remote sens-
ing of fires has been achieved using a variety of space-borne
systems/sensors. In the last decade, the most widely used sen-
sor for long-term and large-scale fire monitoring has been
the Advanced Very High Resolution Radiometer (AVHRR)
on board the National Oceanic and Atmospheric Admin-
istration’s (NOAA) polar orbiting satellites (Flannigan and
Vonder Haar 1986; Kaufman et al. 1990; Kennedy et al. 1994;
Justice et al. 1996; Li et al. 1997; Pereira 1999; Stroppiana
et al. 2000).

AVHRR (onboard the NOAA-14 satellite) imagery was
chosen for its 1.1 km medium resolution, large geographical

coverage with a swath width exceeding 2500 km, and excel-
lent daily sampling frequency (Cahoon et al. 1992). It
provides information over a large geographical area with
potentially more cloud-free scenes for fire monitoring than
other sensors’ images, such as Landsat TM images. In
addition, the spectral bandwidths of AVHRR data offer con-
siderable benefits to fire monitoring (Harris 1996; Li and
Giglio 1999). Channels 1 and 2 (visible and near-infrared
channels) provide data capable of detecting, monitoring and
measuring smoke emissions (Kaufman et al. 1990; Khazenie
and Richardson 1993). Channel 3 (mid-infrared) is extremely
sensitive to hot spots at the subpixel level. Although it has a
lower temperature saturation point, ∼321 K, it is the most
important channel for fire detection (Muirhead and Crack-
nell 1985; Setzer and Pereira 1991; Franca et al. 1995; Pozo
et al. 1997; Rauste et al. 1997). Channels 4 and 5 (ther-
mal channels) are far less sensitive to subpixel hotspots,
but they are often helpful to fire detection when combined
with the other channels (Flasse and Ceccato 1996; Justice
et al. 1996). In addition, the AVHRR onboard post-NOAA-
14 satellite includes a 1.65 µm short wave infrared (SWIR)
channel. The SWIR channel has proven to be highly effective
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for discriminating burned boreal forest (e.g. Fraser and Li
2002).

Existing methods of wildfire detection using NOAA/
AVHRR data can be divided into two broad categories (Giglio
et al. 1999; Li et al. 2000a): (1) fixed threshold algo-
rithms including single channel threshold using channel 3 and
multi-channel thresholds using two or more AVHRR chan-
nels; and (2) adaptive threshold contextual algorithms. Fixed
threshold algorithms apply empirically defined thresholds
to discriminate pixels containing fires from those of non-
burning surroundings and clouds (Boles and Verbyla 2000).
With this category of algorithm, varying degrees of success
in fire detection have been reported (Flannigan and Vonder
Haar 1986; Kaufman et al. 1990; Kennedy et al. 1994; Li
et al. 1997, 2000a; Pozo et al. 1997; Rauste et al. 1997;
Arino and Mellinotte 1998). The advantage of these types of
algorithms is their computational simplicity. Their limitation
is that fixed thresholds are applicable only at local to regional
scales during a short fire season.

Contextual algorithms use adaptive thresholds for fire
detection. The flexible threshold algorithms identify a fire
pixel based on the level of contrast between the potential
fire pixel and its ‘background’ pixels (the definition of back-
ground varies according to kernel size) (Boles and Verbyla
2000). Contextual algorithms are believed to be flexible and
effective in a range of different environmental conditions
(Flasse and Ceccato 1996). Therefore, a contextual algo-
rithm adapted from Flasse and Ceccato (1996) is being used
by the International Geosphere–Biosphere Programme, Data
and Information Systems (IGBP-DIS) fire product (Justice
and Dowty 1994; Malingreau and Justice 1997; Dwyer et al.
1998; Stroppiana et al. 2000). In principle, contextual meth-
ods are more versatile for application to a wide range of
conditions than fixed threshold approaches. However, the ini-
tial fire detection involves fixed thresholds. When they are set
too high, there is a risk of omitting candidate fire pixels dur-
ing the contextual processing stages of fire confirmation (Li
and Giglio 1999).

Active fire detection can identify only a portion of the
entire burn scars due to clouds and infrequent satellite
overpass (Li et al. 2000b). Burn scar mapping should be con-
sidered as another aspect of wildfire mapping in order to
obtain a precise burn scar map. According to Arino et al.
(1999), extraction of burn scars from AVHRR data can
be performed with three different approaches: (1) applica-
tion of multiple tests to spectral values or derived indices
(Pereira 1999) on a single date basis; (2) temporal analy-
sis of derived indices based on pre- and post-fire images;
and (3) classical image segmentation techniques (e.g. use
of unsupervised and supervised classifiers) with single date
or multi-date imagery. Furthermore, a new type of burn-
scar mapping algorithm has been proposed that combines
an active-fire detection algorithm with NDVI and/or other
vegetation indices differencing. For example, one technique,

known as HANDS (Hotspot and NDVI Differencing Syn-
ergy), combines the strengths of its two constituent tech-
niques while avoiding their limitations (Fraser et al. 2000).
Another example is a methodology based on a combination
of AVHRR active-fire detections and a time series of NDVI
where NDVI was computed with an AVHRR middle-infrared
channel instead of a visible channel to reduce the impact
of smoke aerosols (Roy et al. 1999). In addition, Roy et al.
(2002) developed a new method applicable to burned area
mapping using multi-temporal moderate spatial resolution
data (MODIS: the MODerate resolution Imaging Spectrora-
diometer, onboard EOS series satellites). They compared the
MODIS observations through time with the bi-directional
reflectance model-based expectation values to detect
burned area.

Recently, MODIS imagery has become another source of
data of appropriate spatial and temporal resolution to be used
for global studies of biomass burning (Kaufman et al. 1998).
Fundamentally, these active-fire detection and burn scar map-
ping algorithms, reviewed briefly above, can be modified and
applied to MODIS data.

Existing algorithms for active-fire detection and burn scars
mapping lack daily fire evolution tracking capability from
AVHRR data, especially for burn scars mapping, although
some algorithms can compute such evolution tracking within
a relatively wide time period (e.g. within an NOAA satellite
repeat cycle (Roy et al. 1999)) or can detect approximately
daily burning using multi-temporal MODIS data (Roy et al.
2002). In this paper, we propose a new algorithm based on
fire dynamics at a daily scale to obtain daily hotspots and
burn scars. It was applied to California using AVHRR data
acquired over two months, September and October 1999. The
results generated by the new algorithm are presented and
analysed.

Data source and preprocessing

AVHRR data

Daytime AVHRR-HRPT (High Resolution Picture Trans-
mission format) images (1.1 km resolution at nadir) were
acquired daily by NOAA-14. The AVHRR-HRPT data were
downloaded directly from the NOAA SatelliteActiveArchive
Data Center (http://www.saa.noaa.gov). The local overpass
time of NOAA-14 over California during the two months var-
ied from 14:00 to 15:30. The dataset covers the entire state
of California. Due to excessive cloudiness and a data acqui-
sition problem, 13 September and 4, 11, 26 and 27 October
were missed. Consequently, only 56 daily images were avail-
able for analysis. NDVI was calculated from channels 1 and 2
through (Ch2−Ch1)/(Ch2+Ch1). An incomplete dataset of
fire polygons collected through ground survey by the Cali-
fornia Department of Forestry and Fire Protection (CDF) and
wildfire mapping results produced by other wildfire detection
algorithms with the same dataset as those used for testing the
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dynamic algorithm were used to validate results produced in
this experiment.

Data preprocessing

The PACEAVHRR Orbital Navigation Package (PCI geomat-
ics company, Canada, 1997) was used to preprocess AVHRR
data using calibration/orbit information and extracted ground
control points from theAVHRR data file. High precision geo-
metric correction and registration were accomplished by run-
ning PCI-OrthoEngine (PCI Geomatics company, Canada,
1999). Because the scan angle of the AVHRR sensor is quite
large (∼110.8◦), the solar zenith angle can vary significantly
along a scanline, causing different parts of an AVHRR image
to receive varying amounts of solar radiation. The radiance
imbalance among pixels can be reduced by a radiometric
(solar zenith angle) correction (Di and Rundquist 1994). Per-
centage reflectance from the top of the atmosphere (TOA)
for channels 1 and 2 and surface brightness temperature in
Kelvin for thermal channels were obtained.With 6–10 ground
control points (GCPs) collected manually from each of the
images over the two-month period, we achieved a georefer-
encing accuracy of better than 1 km for most images in the
time series.

Algorithm

The flowchart of the dynamic algorithm proposed in this
study is shown in Fig. 1. It is divided into four components
corresponding to preparation, hotspot detection, burn scar
detection and final confirmation.

Preparation (Fig. 1a)

To map wildfires, the dynamic algorithm needs images from
two consecutive days, the present day (D2) and the day before
(D1). The algorithm requires all channels of raw data for
D2 but only the NDVI (denoted by NDVID1) and cumulative
hotspot and burn scar results for D1. In order to eliminate pix-
els on the D2 image contaminated by clouds, cloudy pixels
are identified through two tests: brightness temperature chan-
nel 3 < 260 K and reflectance channel 1 > 80% (brightness
temperature channels 3, 4 and 5, hereafter denoted as T3, T4
and T5, and reflectance channels 1 and 2, hereafter, denoted
as R1 and R2). If for a pixel on the D2 image T3 < 260 K and
R1 > 80%, it is considered a cloudy pixel (Lee and Tag 1990;
Malingreau and Justice 1997); this is because for clouds,
brightness temperature in MIR is low and reflectance in the
visible region is high. The NDVI and burn status of cloudy
pixels from D2 are replaced with those of D1 in the later anal-
ysis. The burn status of a pixel is divided into three classes:
hotspot, burn scar and normal (unchanged). To reduce the
different solar elevation effect on NDVI, NDVID2 is nor-
malised to NDVID1. This is achieved by balancing the NDVI
means of D1 and D2. NDVI difference (NDVIdiff) between
D1 and D2 is calculated by subtracting NDVID1 from nor-
malised NDVID2. Finally, the mean and standard deviation

(s.d.) of NDVI decrease between D1 and D2 are calculated
over the regions of the different land cover types. It is worth
noting here that, since the NDVI values of D1 and D2 are
calculated with the TOA reflectance of channels 1 and 2,
if it happens that the phenomenon of sudden and dramatic
impact of smoke aerosols on TOA reflectance occurs when
the satellite overpasses, the NDVI values may not be reliable.
However, due to difficulties in reliable atmospheric correc-
tion of smoke aerosols, we still use the NDVI calculated with
the TOA reflectance and try to weaken the resulting impact
of the smoke aerosols and the variation of other atmospheric
components on NDVI by normalising NDVID2 to NDVID1.

Hotspot detection (Fig. 1b)

As in most previous work (Kennedy et al. 1994; Franca
et al. 1995; Justice et al. 1996; Arino and Mellinotte
1998; Li and Giglio 1999; Li et al. 2000a), tests based
on brightness temperature (T3 ≥ 315 K) and NDVI differ-
ence (NDVIdiff < (mean + 1.0 * s.d.)) for any pixel are first
assessed to determine if it is a potential fire pixel. The thresh-
old for T3 was selected based on the assumption that the
radiation measured by channel 3 corresponded to peak radi-
ation from objects around 800 K. This is close to the burning
temperature of biomass (Kennedy et al. 1994), although most
wildfires will range from 500 K to 1000 K (Li et al. 2000a).
The threshold for NDVIdiff was set by trial-and-error with
data from known burn scars (CDF fire polygons). An NDVI
difference lower than the threshold is considered indicative
of burning biomass (note that this condition is not available in
existing active-fire detection algorithms). Otherwise, the veg-
etation falls in the non-burnt category. Therefore, an NDVI
difference threshold can filter out a certain percentage of the
false fires that pass the condition T3 ≥ 315 K.

The remaining five tests at this stage are for removing
false fires. The thresholds of the five tests are similar to those
used elsewhere (e.g. Li et al. 2000a). The threshold for (T3–
T4) eliminates false fires caused by warm background. In
southern California, bare soils can be a warm background
that during the daytime saturates channel 3. In the event
of biomass burning, channel 3 receives much more radiant
energy than channel 4. Therefore, T3–T4 is high (Kennedy
et al. 1994; Li et al. 2000a). Test T4 ≥ 260 K eliminates pix-
els with highly reflective clouds. Test (T4–T5) ≥ 4 K and
(T3–T4) ≤ 19 K, as in Li et al. (2000a), is for eliminating
false fire pixels caused by thin cirrus clouds and for further
removing the false fires, caused by warm background, that
passed the previous tests. The remaining two tests eliminate
false fires caused by highly reflecting clouds, bright sur-
faces ((R1+R2) ≥ 75% and R2 ≥ 30%) and sun glint pixels
(|R1−R2| ≤ 1%).

Burn scar detection (Fig. 1c)

At the second stage of analysis—burn scar detection—we
first check if T3 < 315 K for a given pixel. If that is true
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Fig. 1. A flowchart of the dynamic algorithm. (a) Preparation stage. (b) Hotspot detection stage. (c) Burn scar detection stage. (d) Final
confirmation stage.



A dynamic algorithm for wildfire mapping 279

and the pixel was a hotspot pixel on D1, then it automati-
cally becomes a confirmed burn scar pixel (BSP) on D2. If
T3 < 315 K but it was not a hotspot on D1, then the pixel may
satisfy NDVIdiff < (mean − 3.5 * s.d.) and (T3–T4) ≤ 14 K,
in which case it is a potential BSP. Otherwise it is consid-
ered a normal pixel (unburned pixel). A coefficient of 3.5
was determined based on the criterion of minimum residual
error through analysis of difference between the actual burn
scars selected from CDF fire polygons and the correspond-
ing mapped burn scars. Note that the final burn scars mapped
by this method are sensitive to the selection of the coefficient
value. It was determined experimentally that the substantially
low threshold compared to that used in active fire detection
maintains a low level of commission error in the identifica-
tion of BSPs. If the first test is false, and the pixel was a
hotspot pixel on D1 and (T3–T4) ≤ 14 K, then the pixel also
automatically becomes a confirmed BSP on D2. Confirmed
BSPs and potential BSPs on D2 all pass to the final stage for
confirmation.

Confirmation (Fig. 1d)

All non-wildland hotspots and burn scar pixels are masked out
using a land cover type map (the Gap Analysis Project (GAP)
vegetation dataset (Anderson et al. 1976; Holland 1986)).
Open land, urban, agricultural cropland, dune and desert areas
in California were here defined as non-wildland types while
scrub, chaparral, grassland, marsh, riparian forest, woodland,
rangeland and forests in California were defined as wildland
classes in this analysis. Single hotspot and potential BSP pix-
els are then eliminated. It is assumed that in most situations
single fire pixels and BSPs might be caused by subpixel fire
contamination and/or other noise as well as by an image reg-
istration error between two consecutive days. For example,
a forest pixel containing a fraction of water body along the
edge of a lake may contain insufficient sun glint to be elim-
inated in earlier stages but will be removed at this stage. It
is likely that those false single fires and BSPs distributing
along boundaries of different land cover types are caused
by possible subpixel registration errors. Therefore, it is rea-
sonable to eliminate the single hotspot and/or BSP pixels at
the final confirmation stage because the subpixel registra-
tion error between two consecutive days always exists in this
dynamic algorithm. If the registration error of image to image
is more than one pixel, this dynamic algorithm may cause a
greater burn scar mapping error than other methods, such as
MHANDS (a modified version of HANDS of Fraser et al.
2000) addressed as below. For this case, the algorithm may
fail to produce a reliable result; users should be aware of this
limitation.

An iterative procedure is used in BSP confirmation. A
potential BSP is confirmed by a neighbour hotspot (within
an 8-pixel neighbourhood) and in subsequent iterations by
one to four previously confirmed neighbouring BSPs (includ-
ing D1 hotspots and confirmed BSPs). In the first iteration

a BSP can be confirmed by a neighbouring hotspot; in the
second iteration it can be confirmed by either a neighbouring
hotspot or a confirmed BSP; during the third to fifth itera-
tions, it is confirmed by 2–4 confirmed BSPs; and after the
fifth iteration, BSPs can be confirmed only by four confirmed
neighbouring BSPs. After the confirmation stage, a real burn
scar has to contain at least two hotspots (pixels). Finally, the
cumulative hotspot map and burn scar map for D2 are stored
and can be used as D1 data for the following day.

Results and analysis

The hotspot and burn scar results detected with daily AVHRR
data for the two months in 1999 were produced simultane-
ously by the dynamic algorithm. For convenience, we analyse
the hotspot and burn scar results separately.

Hotspot detection

To demonstrate the effectiveness of the dynamic algorithm,
we compare the result from this algorithm with that gener-
ated by the MCCRS algorithm (Li et al. 2003) (originally
developed by the Canadian Center for Remote Sensing (see
Li et al. 2000a), but modified for use in California) (Fig. 2b).
Because, compared to other existing algorithms, the CCRS
algorithm produced superior results when employed to detect
fires in the Canadian boreal forest (Li et al. 2000a), we modi-
fied the CCRS algorithm for wildfire detection in California.
The MCCRS algorithm is also being considered for use in
our North America historical forest fire mapping project (Li
et al. 2003), sponsored by NASA (National Aeronautic and
Space Administration), USA. Figure 2a presents an AVHRR
composite image (R2/R2/R1 v. R/G/B) showing three active
fires (three red circles) on 02 September 1999, in northern
California, used as a locative reference and background for
the results presented (hotspot composites and burn scar map)
below. Figure 2b,c shows hotspot composites of the area over
the two months, produced by the MCCRS and the dynamic
algorithms respectively.The black lines in the figure represent
fire polygon boundaries from CDF, and the light shadow areas
both inside and outside the polygons are hotspots detected by
the algorithms.

Compared to the satellite images and limited CDF fire
polygons, the total hotspots detected by the two algorithms
appear similar. The number of hotspots detected is 890 pixels
for the MCCRS algorithm and 989 pixels for the dynamic
algorithm. Most hotspots detected by the two algorithms
are inside fire polygons, although some are outside. Despite
the similarity of total detected hotspots, the hotspot distri-
bution of the MCCRS is slightly different from that of the
dynamic algorithm. It is evident that the hotspot distribution
produced by the dynamic algorithm looks more reasonable
than that of the MCCRS algorithm, especially in the burn
scars labelled as A and C and for areas in southern California
(the wildland fire detection results for southern California
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Fig. 2. AVHRR composite image (R2/R2/R1 v. R/G/B) showing three active fires in red circles on 02 September 1999, northern
California, USA (a), and hotspot composite results for September and October of 1999, generated by the MCCRS algorithm
(b) and the dynamic algorithm (c). The zoom-in fire polygon (A) in (b) and (c) burned around 50 days from 01 September to
20 October 1999. The black lines in the figure represent fire polygon boundaries from CDF and the light shadow areas both
within and outside the polygons are hotspots detected by the algorithms.
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Fig. 3. Burn scar mapping results of September and October 1999 using the MHANDS algorithm (a) and the dynamic algorithm
(b). The black lines in the figure represent fire polygon boundaries from CDF and the light shadow areas both within and outside
the polygons are burn scars detected by the MHANDS and the dynamic algorithm.

are not shown in relevant figures in this paper). We compared
the algorithms at the fire detection stage and found that the
(NDVIdiff < (mean + 1.0 * s.d.)) condition in our dynamic
algorithm could filter out many false alarms. We have demon-
strated this point in the burn scar mapping with MHANDS,
although we do not present the result in this paper.

Burn scar detection

Figure 3 shows a part of the burn scar mapping results gener-
ated by the MHANDS algorithm and the dynamic algorithm.
With the dynamic algorithm, a total of 2281 km2 of burn
scars was mapped for the two months September and October

1999. Previous studies have shown that a pixel does behave
spectrally as a ‘burnt pixel’ when at least 50% of the land
surface covered by the pixel is burnt.Therefore, when consid-
ering the fact and comparing our mapping result (2281 km2)
to an incomplete dataset (incomplete coverage of the entire
state of California) of ∼1800 km2 from the CDF fire poly-
gons, we think that the mapped result seems reliable because
we calculated burn scars at the pixel level. In addition,
compared to the result (2227 km2, Fig. 3a) generated by the
MHANDS algorithm for the 2 months, the result produced by
the dynamic algorithm looks reasonable (Fig. 3b). The major
differences between MHANDS and HANDS are: separate



282 R. Pu et al.

calculation of means and standard deviations of NDVI
decrease for the different land cover types, and use of a dif-
ferent iteration algorithm for confirming a potential burn scar
pixel. After conducting a closer examination of the distribu-
tion of burn scars mapped from Fig. 3 and a closer comparison
between burn scars mapped by the dynamic method and CDF
fire polygons, we can easily see that neither of the burn scar
areas produced by the two methods (MHANDS and dynamic)
fill the corresponding CDF fire polygons fully. Although the
distributions of the burn scars mapped by the MHANDS
method look better than those of the dynamic method for
the burn scars labelled as A and C (Fig. 3a compared with
3b), the MHANDS method fails to map the burn scar labelled
as B. Therefore, both algorithms had a similar capability for
mapping the total burn scars in this experiment.

In Fig. 3b, the burn scar labelled as A matches well with
its corresponding CDF fire polygon. Mapped burn scars B
and D seem larger than the CDF fire polygons, while the area
labelled C has less burnt acreage than the CDF fire polygon.
To track the evolution of burned area mapped by the dynamic
algorithm and to gain insight into the difference in burn scars
mapped, we examined the time series of AVHRR composite
images corresponding to the three fire events mapped by the
dynamic algorithm (labelled as B, C and D in Fig. 3) that
did not match the CDF fire polygons. For burn scar D, burn-
ing lasted ∼20 days (almost all cloud-free), beginning on 28
August 1999. The hotspots detected in the period correspond
to a larger burned area than the CDF fire polygon, mapped
by the dynamic algorithm. For the burn scar labelled as B,
the upper area burned from 02 to 20 September and smoke
from this area appeared almost every day in the period, while
the lower area burned for 5 days (16–20 October) with a cou-
ple of days having clouds over the area. Therefore, a burned
area greater than the CDF fire polygons indicate seems rea-
sonable, at least for the upper area in B (based on its daily
visual smoke). For the burn scar C, it is apparent that the
dynamic algorithm failed to map many burnt pixels. This is
because there were three cloudy days during the 5-day burn-
ing (28 September–02 October), which led to missing the
mapping of many burnt pixels. However, for the burn scar
C in Fig. 3a, due to using NDVI composites before Septem-
ber and after October, the burn scar was mapped better with
the MHANDS algorithm than with the dynamic algorithm
(Fig. 3b).

Evolution of wildfires

A major advantage of using the dynamic algorithm is being
able to monitor development of a wildfire event to a certain
degree. Daily cumulative hotspot and burn scar results can
be obtained (note that the daily cumulative hotspot result can
also be obtained through single day hotspot detection, see
Li et al. 2000a). Figure 4 illustrates the two curves of daily
cumulative results detected during September and October
1999 in California. From the figure, it is easy to monitor the
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Fig. 4. Daily cumulative results of hotspot and burn scars from 01
September to 31 October 1999, generated by the dynamic algorithm.

growing hotspot and burn scar trends over time. The results
in Fig. 4 imply that the hotspots that the dynamic algorithm
detects make up ∼40–60% of the entire burn scars. The fig-
ure also provides some information about the severity of fire
damage over time based on the slope information of the cumu-
lative curves. For example, the burn scar curve from day 257
to day 272 grows faster than other days, especially during the
period from day 270 to day 272.

Figure 5 shows both the spatial and the temporal evo-
lution of hotspots and burn scars detected by the dynamic
algorithm. Due to visual identification’s limitation to colours,
we show only the evolution of hotspots and burn scars in
intervals spanning several days: 01–05 September in blue,
06–10 September in cyan, 11–15 September in green, 16–
20 September in yellow, 21–30 September in brown, 01–10
October in pink, 11–20 October in red and 21–30 October
in purple. From the zoom-in plots in the figure, it is imme-
diately obvious that both hotspots and burn scars evolved in
a north-west direction. The evolution information of wild-
fire, obtained through the dynamic algorithm, is useful for
monitoring the spatial and temporal patterns of fire activity
and development of a fire event throughout the study area
and within a particular time interval. Consequently, these
mapped results can finally help us monitor the development
of hotspots and burn scars both in space and in time.

Validation issue

While many fire algorithms have been proposed, only a small
number of them have been rigorously validated. In most
cases, only cursory validations were conducted by compar-
ing detected hotspots against fire smoke plumes (Li and
Giglio 1999), due to the lack of ground truth in most regions.
Therefore, validation of fire detection algorithms remains an
outstanding issue. In this study, we used a dataset of CDF
fire polygons to validate the mapping result by the dynamic
algorithm. However, due to the fact that the CDF fire dataset
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Fig. 5. Evolution maps of hotspots and burn scars in different colours: 01–05 September, blue; 06–10 September, cyan; 11–15
September, green; 16–20 September, yellow; 21–30 September, brown; 01–10 October, pink; 11–20 October, red; and 21–31
October, purple. (a) Hotspot evolution map. (b) Burn scar evolution map.

does not make a complete coverage of the entire state of
California (missing data over some areas) and is inconsis-
tent for its coordinates (with some degree of geo-location
error) among all fire polygons, those fire polygon boundaries
shown in Figs 2, 3 and 5 are just used as a general reference
and cannot be used for any exact verification of the results
mapped by the dynamic algorithm. In addition, the compar-
ison of the results generated by the MHANDS and dynamic

algorithms is also used as a general cross-validation between
algorithms.

Conclusions

The preliminary comparisons between mapped results
of the dynamic algorithm and CDF fire polygons and
between the two wildfire mapping algorithms (MHANDS
and dynamic), as well as visual examination of AVHRR
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composite images, all indicate the potential of the dynamic
algorithm to track burn scars at different stages of develop-
ment and to produce a total burned area and hotspots similar
to those produced by other algorithms. The dynamic algo-
rithm appears to be able not only to produce daily cumulative
hotspots but also to map daily cumulative burned area. The
latter is the major contribution of this algorithm to wildfire
detection methods. Therefore, the wildfire mapping result
by the dynamic algorithm can be used to monitor evolution
of wildfire activity both spatially and temporally. However,
since the comparison of time series AVHRR data is sensi-
tive to errors in multi-temporal image registration caused by
the wide field of view of NOAA/AVHRR data (Roy 2000),
etc., for the dynamic algorithm, a highly accurate registration
system at the subpixel level is required.
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