The Bidirectional Effects of AVHRR Measurements over Boreal Regions
Zhanqing Li, Josef Cihlar, Xingnian Zheng, Louis Moreau, and Hung Ly

Abstract— The objectives of this paper are to analyze the bidirectional effects of satellite data over six land-cover types in northern regions, and to test a method for the routine correction of these effects. Analyses and corrections were carried out with both single-day and 10-day composite data obtained by the advanced very high resolution radiometer (AVHRR) from central Canada acquired in 1993/1994, in part, for the boreal ecosystem and atmosphere study (BOREAS). The model of Wu et al. [21], developed from a separate data set collected at lower latitudes, was employed for correcting the effects. The analysis showed a strong viewing angle dependence in AVHRR channels 1 and 2 from both single-day images and composites. Reflectances at extreme viewing angles are two to four times larger than those observed near nadir. On average, the effects introduce a variation of 39% relative to mean reflectances. Although the effects decrease in the normalized difference vegetation index (NDVI), they are nevertheless significant before the correction. Using the model of Wu et al. [21], the BRDF-related variability is reduced by about 68% in channel 1 and 71% in channel 2. After a simple adjustment of the model coefficients, a further reduction of 4% (channel 1) and 6% (channel 2) of the BRDF-related variability was achieved for the 10° km² BOREAS region. The effectiveness of the correction with both original and refined model of Wu et al., was found to be weakly dependent on land-cover type. Corrections for coniferous, mixed wood, and cropland are better than other land-cover types (rangelands/pasture, deciduous, and transitional forests) with residual BRDF errors around 0.05 in both channels. Overall, the model (albeit simple) performs reasonably well throughout the growing season. To apply the model, only general knowledge of land-cover type is required, namely forest, cropland, grassland, and bare ground.

I. INTRODUCTION

NORTHERN ecosystems play an important role in regional and global weather and climate. A recent analysis [1] suggested that the Boreal Forest, a major biome of the northern ecosystem, determines the position of the arctic front along its northern edge, and thus, has an essential role in defining high-latitude weather and climate. Interactions between northern vegetation and global climate involve complex feedbacks between atmosphere, terrestrial surface, Arctic Ocean, and sea ice/snow [2]. As a result, boreal climate and ecosystems are particularly vulnerable to global changes. Increasing CO₂ has an amplified warming effect at high latitudes (45°N-65°N) [3], whereas boreal deforestation could lower temperature by up to 10° and lead to irreversible disappearance of the forest [2]. Studies repeatedly suggest that boreal biomes are large terrestrial sinks of CO₂ [4]-[6]. Northern ecosystems have thus become an important theme of global change studies. An example is the boreal ecosystem-atmosphere study (BOREAS) [7]. BOREAS is an international, interdisciplinary, scientific program whose overall goal is to understand the interactions between the atmosphere and boreal forests through the exchange of heat, energy, and gases, particularly H₂O, CO₂, and CH₄. Over large spatial scales, remote sensing is the only feasible and economical means of monitoring the state variables that control the exchange of these quantities. Therefore, large amounts of remote-sensing data were acquired during the BOREAS campaigns for retrieving surface fluxes, driving and testing models, and studying the processes governing surface-atmosphere interactions.

Measurements from the advanced very high resolution radiometer (AVHRR) are among the most useful satellite data for land monitoring [8]. Many terrestrial parameters essential for BOREAS can be derived from AVHRR [9] such as land cover type [10]-[11], photosynthetically active radiation [12]-[14], leaf-area index [9], and CO₂ flux [15]. To derive these parameters from AVHRR measurements reliably and consistently necessitates several preprocessing steps: radiometric calibration, geo-referencing, angular correction, removal of atmospheric and cloud effects, etc. [16]. This study addresses one of these steps, namely, the angular correction of the AVHRR observations made over several predominant northern land-cover types under clear-sky conditions.

The angular correction aims at removing the dependence of AVHRR measurements on sun-target-sensor geometry. Mathematically, the dependence is expressed as a bidirectional reflectance distribution function (BRDF). The bidirectional effect is one of the classical issues in remote sensing studies. Just like the spectral dependence, the angular dependence provides new information about the properties of the sensed target [17]. However, for many geophysical and biogeochemical remote-sensing applications, the effect is often treated as an inherent problem associated with the use of a scanning radiometer, especially if insufficient measurements are available to characterize the BRDF. After many years of study, it is still one of the most uncertain steps in the processing of remote sensing data [18]. This is partially due to the technical difficulties in obtaining simultaneous measurements from multiple angles, and partially to its strong variability with many factors.
Bidirectional effects in AVHRR measurements have been addressed in previous studies [19]–[22]. The objectives of this study are to 1) document and analyze the bidirectional effects of clear-sky AVHRR measurements made over different types of northern biomes, 2) test and improve the performance of the BRDF model of Wu et al. [21] with an independent data set, and 3) provide a corrected comprehensive remote-sensing product for use in the BOREAS project. In addition, the results of the study will assist in selecting a BRDF model for operational processing of clear-sky AVHRR measurements in northern regions. The data and model used are introduced in Sections II and III, respectively. Analysis and correction of the bidirectional effect is presented in Section IV. Section V concludes the study.

II. DATA PROCESSING

AVHRR has five spectral bands in the visible (channel 1), near-infrared (channel 2), mid-infrared (channel 3), and thermal infrared (channels 4 and 5) regions of the electromagnetic spectrum. Only the two shortwave channels (1 and 2) which have been used extensively for terrestrial monitoring are dealt with in this study. The AVHRR is onboard the National Oceanographic and Atmospheric Administration’s (NOAA) polar-orbiting sun-synchronous satellites. Typically, there are two polar-orbiting NOAA satellites operated concurrently with different overpass time: one in the morning and another in the afternoon during the daytime. Scenes at low latitudes are viewed only once a day by one satellite, while multiple observations from different viewing angles are available at high latitudes owing to the convergence of satellite orbits. AVHRR scans the earth in a cross-track mode with a maximum scan angle of 55.4°. The field of view degrades from a circle with a 1.1 km diameter at nadir to an ellipse (2.5 km × 6.8 km in size) at the largest scanning angle.

AVHRR data employed in this study were obtained from NOAA 11, an afternoon spacecraft, over an area of 1500 × 1500 km² that covers part of Manitoba, Saskatchewan, Alberta, and northwest territories of Canada (Fig. 1). It encompasses the BOREAS region of 1000 × 1000 km². We intentionally chose a larger area to include a wider range of land-cover types and conditions. The land-cover map of Canada shown in Fig. 1 was derived from AVHRR images.
It has eight cover types including mixed forest, deciduous forest, transition forest, conifer forest, tundra, barren, cropland, and pasture. The map has a nominal resolution of 1 km, but the actual resolution may be significantly coarser due to the larger AVHRR footprints at larger viewing angles. Therefore, the distribution represents regional trends better than local detail. The selected region contains all types of land cover across Canada distinguished by the classification, but does not include the large topographic effects typical of the Rocky Mountains.

Two types of AVHRR data were employed: single-date images and ten-day composites. The raw HRPT data covering nearly the entire Canada landmass were obtained at a satellite receiving station of the Canada Centre for Remote Sensing (CCRS), Prince Albert, Saskatchewan. Data were processed using the GEOcoding and COMPosing (GEOCOMP) system [24] developed by CCRS and operated by the Manitoba Remote Sensing Centre. It performs sensor calibration, registration, and compositing of scenes which are selected within the full sensor swath. Radiance data from channels 1 and 2 were calibrated using post-launch time-dependent gain and offset coefficients [25]. Data registration was done with reference to ground control points obtained from high-resolution image chips, and the images were resampled using a modified Kaiser 16-point $\sin(x)/x$ kernel. To obtain a single-date image covering the entire study area, we need to mosaic several scenes together.

Clear-sky composites across the entire Canada landmass were produced for each ten-day period by retaining the measurements with the largest normalized difference vegetation index (NDVI) at the top of the atmosphere (TOA) [16]. NDVI is defined as the ratio of the difference over the sum of the reflectance in channel 2 and channel 1. Ten parameters were saved including five AVHRR channels, NDVI, three geometric angles (solar zenith, view zenith, and relative azimuth), and the date of acquisition. Although the composites are nominally cloud-free, they may, in fact, contain completely or partially cloud-contaminated pixels if these are least cloudy during the compositing period. Apart from clouds, the data can also be contaminated by smoke or other heavy aerosols, snow, and ice. These contaminated pixels were identified and eliminated from further analysis using information about the seasonal trends of albedo and NDVI [26]. All data employed in this study are at the TOA. No atmospheric correction was made. The methodology and qualitative conclusions regarding the bidirectional dependence are, however, also applicable to surface reflectance obtained after an atmospheric correction [16].

III. BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION (BRDF)

Bidirectional correction assumes knowledge of the BRDF. There have existed many BRDFs derived from observations and simulations [27]. They can be classified as empirical, physical, and semi-empirical. Empirical models have two formats, tabulation, and function. Tabulated BRDFs are obtained by sorting reflectance measurements into different viewing bins and then integrating all bin-mean reflectances over the entire viewing domain [28], [29]. Empirical models in the functional format can be obtained by fitting functions to observed reflectances with viewing angles as the arguments of the function [30]. Since most operational satellites do not provide measurements from all directions, it is often difficult to develop a BRDF solely based on satellite data. Besides, a model developed from a specific data set may be invalid for other data sets.

In contrast, physical models entail no observations as they are built on the physics of scattering process [31]–[34]. Unfortunately, due to the complex nature of the scattering problem, development of such models always necessitates certain assumptions that highly limit their utility. Furthermore, many model parameters are not readily available, such as leaf-angle distribution. Thus, semi-empirical models were constructed on the basis of the physics of radiative transfer with model coefficients to be tuned according to observations. Models in the form of linear combinations of a few basic functions called kernels are becoming increasingly popular, especially for the applications of land remote sensing [35]–[37]. From a mathematical point of view, a kernel-based BRDF is more effective if the kernels are orthogonal to each other, i.e., the integration of the product between two kernels over the viewing domain is equal to zero. Unfortunately, this constraint may not hold as the kernels are usually derived from the simplification of more complex physical models [38]. As a result, models of a small number of kernels can fit well certain types of observed angular patterns, but not necessarily work well for others. Nevertheless, kernel-driven models have many advantages over both empirical and physical models. From the operational and computational viewpoints, the most notable advantage is that they can be realized without having measurements across the entire viewing domain and yet be efficiently invertible. They can be versatile if different types of kernels are used to cope with different scattering processes, a strategy to be used in the processing of MODIS data from the earth observation system [39].

This study is based on a semi-empirical model of kernel-driven type that was developed by Wu et al. [21] with two kernels derived by Roujean et al. [35]. The model is given by

$$\rho_j(\theta_s, \theta_v, \phi) = K_0 + K_1 f_1(\theta_s, \theta_v, \phi) + K_2 f_2(\theta_s, \theta_v, \phi)$$

(1)

where $\rho_j$ denotes reflectance in channel $j$ ($j = 1, 2$). $f_1$ and $f_2$ are two kernels that depend on three angles, namely, solar zenith $\theta_s$, view zenith $\theta_v$, and relative azimuth $\phi$ (the difference between the solar azimuth and the sensor azimuth)

$$f_1(\theta_s, \theta_v, \phi) = \frac{1}{2\pi} \left( \frac{\pi}{2} - \phi \right) \cos \phi + \sin \phi \tan \theta_s \tan \theta_v$$

$$= \frac{1}{2\pi} \left( \tan \theta_s + \tan \theta_v \right)$$

$$+ \sqrt{\tan^2 \theta_s + \tan^2 \theta_v - 2 \tan \theta_s \tan \theta_v \cos \phi}$$

(2)

$$f_2(\theta_s, \theta_v, \phi) = \frac{4}{3\pi (\cos \theta_s + \cos \theta_v)}$$

$$\times \left[ \left( \frac{\pi}{2} - \xi \right) \cos \xi + \sin \xi \right] \frac{1}{3}$$

(3)

$$\cos \xi = \cos \theta_s \cos \theta_v + \sin \theta_s \sin \theta_v \cos \phi.$$
TABLE 1

<table>
<thead>
<tr>
<th>Channel 1</th>
<th>α₁₁</th>
<th>α₂₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>barren</td>
<td>0.210</td>
<td>1.629</td>
</tr>
<tr>
<td>cropland</td>
<td>0.0</td>
<td>3.622NDVI^0.539</td>
</tr>
<tr>
<td>forest</td>
<td>0.0</td>
<td>3.347NDVI^-0.153</td>
</tr>
<tr>
<td>grassland</td>
<td>1.335e^-11.39NDVI</td>
<td>-0.493 + 14.94NDVI - 18.32NDVI^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel 2</th>
<th>α₁₁</th>
<th>α₂₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>barren</td>
<td>0.212</td>
<td>1.512</td>
</tr>
<tr>
<td>cropland</td>
<td>0.0</td>
<td>1.620NDVI^0.109</td>
</tr>
<tr>
<td>forest</td>
<td>0.0</td>
<td>1.833NDVI^-0.103</td>
</tr>
<tr>
<td>grassland</td>
<td>7.745e^-22.80NDVI</td>
<td>-0.250 + 13.88NDVI - 20.43NDVI^2</td>
</tr>
</tbody>
</table>

\( f_1 \) describes the bidirectional dependence for diffuse reflection from opaque reflectors on the ground and the shadowing effects of leaves. \( f_2 \) accounts for the contribution of volume scattering by a collection of randomly dispersed facets of canopies and bare soils. While these kernels were originally designed for dealing with surface BRDF, it was shown in [21] to be valid for TOA BRDF as well. The contribution of the atmosphere on TOA BRDF is tackled by \( f_2 \). \( K_0 \) represents the bidirectional reflectance for \( \theta_x = \theta_v = 0 \), \( K_1 \) and \( K_2 \) are coefficients denoting the relative contributions of \( f_1 \) and \( f_2 \). The values of the coefficients \( K_0, K_1 \), and \( K_2 \) were empirically determined for four land-cover types including barren, cropland, forest, and grassland using AVHRR measurements collected over 19 land sites located mostly in the U.S. and a few in Canada [21].

The BRDF model of Wu et al. [21] is given by

\[
\Omega_j(\theta_x, \theta_v, \phi) = \frac{\rho_j(\theta_x, \theta_v, \phi)}{K_0} = 1 + a_{1j} f_1(\theta_x, \theta_v, \phi) + a_{2j} f_2(\theta_x, \theta_v, \phi)
\]

where \( a_{1j} = K_1/K_0 \) and \( a_{2j} = K_2/K_0 \). They were fitted as functions of NDVI to account for the seasonal variation in the bidirectional effect (Table 1). Using (5), one can normalize an AVHRR measurement made from a specific sun-target-satellite geometry denoted by \( \rho_j(\theta_x, \theta_v, \phi) \) to any common geometry, e.g., the nadir view with a solar zenith of 45°. [20]-[21]

\[
\rho_j(45^\circ, 0^\circ, \phi) = \frac{\Omega_j(45^\circ, 0^\circ, \phi)}{\Omega_j(\theta_x, \theta_v, \phi)} \rho_j(\theta_x, \theta_v, \phi).
\]

The normalized reflectance determined by (6) is particularly useful for monitoring purposes, since changes associated with differences in illumination and viewing geometry are removed or reduced. Of course, in principle, one could normalize reflectance measurements to other common viewing geometries, but the one used here may be preferable to many users. This is because the nadir view has the smallest atmospheric influence and 45° is the mean of minimum and maximum solar zenith angle. Another important application of the BRDF is that it can be used to determine an hemispheric albedo \( A(\theta_x) \) from a reflectance observed from a single direction \( \rho_j(\theta_x, \theta_v, \phi) \).

\[
A_j(\theta_x) = \frac{\rho_j(\theta_x, \theta_v, \phi)}{\pi \Omega_j(\theta_x, \theta_v, \phi)} \int_0^{\pi/2} \int_0^{\pi} \Omega_j(\theta_x, \Theta_v, \Phi) \cos \Theta_v \sin \Theta_v \ d\Theta_v \ d\Phi.
\]

IV. ANALYSIS

A. Single-Date Image

Fig. 2 presents a mosaic of AVHRR images for reflectance at channel 1, channel 2, and NDVI over the selected region on July 25, 1994. Except for a few scattered cumulus clouds, the images are mostly cloud free. The mosaic is composed of data from two consecutive passes separated by about 1.5 hours, the scene on the right being taken earlier. During this short period, clouds remained stationary, as indicated by the uninterrupted cloud pattern across the boundary between the two scenes. The bidirectional effect is evident from the striking contrast in brightness between left and right scenes, which is certainly not caused by natural variation. The abrupt changes in image brightness result from discontinuities in three geometric
angles. The difference in solar zenith plays a relatively small role as its variation (~15°) is smaller than those in viewing zenith (~25°) and relative azimuth (~180°). The right portion of the image has been acquired close to the nadir (view zenith of 0°) whose location is indicated by the white line on Fig. 2(a). Within this right portion of the image but to the right of nadir, view zenith increases from 0° to up to 50° (upper right corner) and relative azimuth angle is around 0°. Therefore, these pixels represent backscattering which increases with view zenith (whose magnitude is always less than the solar zenith, >65°). As a result, although reflectances are high, they are still considerably lower than the peak values that would occur when view zenith is equal to solar zenith and the relative azimuth is near 0°. This phenomenon is often referred to as “hot spot” that has been observed over most terrestrial scenes [21], [40]. The dark section of the right-hand portion of the image (between the scene junction and the nadir footprint) corresponds to forward scattering with relative azimuth close to 180° and viewing zenith ranging from 0° to 37°. The entire left portion of the scene represents backscattering with view zenith varying from 37° at upper left corner to 67° near the center of the image. As the magnitude and trend of variation in view zenith are similar to those in solar zenith, the bright measurements displayed on the left scene echoes the effect of the hot spot. The bidirectional effect is also clearly manifest in the image of NDVI [Fig. 2(e)], although it is less pronounced than for reflectance. This is because BRDF for channel 1 reflectance is similar but unequal to that for channel 2 reflectance [21]. This confirms the need to correct NDVI measurements for view zenith effect, not just for solar zenith [8], [15].

The discontinuity across the scene junction is further quantified in Fig. 3. It depicts the changes in TOA reflectance (single pixel trace) in channels 1 and 2, NDVI, and three geometric angles along four short transects (35 km) across the scene junction (Fig. 2) with different types of land cover. The variation in viewing geometry is displayed along each transect, which is similar to other transects (Fig. 3). The contrast in reflectance between the forward- and backward-scattering directions is very large in both channels, the latter being two to four times brighter than the former. Over forests, channel 1 TOA reflectance increases from 0.06 in the forward scattering direction to around 0.2 in the backscattering direction. Reflectance in channel 2 is more variable. For transitional and coniferous forests, it ranges approximately from 0.1 to 0.4 from forward to backward-scattering directions in comparison to about 0.2–0.5 for deciduous forest. Over cropland, reflectance increases from 0.11 (0.20) to 0.32 (0.52) for channel 1 (2) from forward-to backward-scattering direction. Therefore, the largest distinction between clear and cloudy scenes occurs in channel 1 reflectance, measured in forward-scattering direction. In comparison to reflectance, NDVI displays a smaller and more gradual variation with viewing geometry (Fig. 3) larger in forward-scattering direction than in backward-scattering direction. The sharpest NDVI drop occurs over deciduous forest, decreasing from 0.60 to 0.43. The change in NDVI over conifers is even larger but takes place more gradually, owing to the steady decrease in channel 2 reflectance. The smallest NDVI change is observed over cropland which is only about 0.05.

The bidirectional effects exhibited in Figs. 2 and 3 are strong enough to hinder our ability to monitor the changes of targets. The BRDF model of Wu et al. [21] was thus employed to normalize reflectances using (2)–(6). Fig. 4 presents the reflectances normalized to the solar zenith of 45° and viewing zenith of 0° for channels 1 and 2 and the NDVI. The contrast between the right and left scenes diminished significantly, but for reflectance it is not eliminated completely. In comparison, the correction appears sufficient to eliminate the discontinuity in the NDVI image. The reduction of the discontinuity is demonstrated more clearly in Fig. 5 which shows the same transects as in Fig. 3 but for data portrayed in Fig. 4. The only remaining weak discontinuity in NDVI is observed over deciduous forest. Reflectance in both channels shows small changes across the junction of two scenes, except for the deciduous forest where channel 2 discontinuity was removed completely. The remaining small discontinuity is not surprising given that the coefficients of the BRDF model employed here were derived empirically from a different data set [21].

B. Composite Data

Since the plane of sun-target satellite is very close to the principal plane of sun-target zenith, bidirectional effects in the composites are demonstrated in plots of reflectance against view zenith which was assigned to be negative for...
backscattering ($\phi \sim 0^\circ$) and positive for forward scattering ($\phi \sim 180^\circ$). Fig. 6 presents clear-sky reflectance (contaminated pixels excluded) in channels 1 and 2 observed over six cover types of sufficient samples including mixedwood (coniferous/deciduous), deciduous, coniferous, and transitional forests, cropland, and rangeland/pasture in the study region. As a result of natural variability the reflectances for the same cover type with the same viewing geometry fluctuate somewhat, especially for channel 2 reflectance whose variation amounts up to 0.2. Nevertheless, the trends in the variation of reflectance with viewing zenith are well defined. The trends for channel 1 reflectance are similar for all types of biomes, with minima occurring near the nadir and increasing with viewing zenith in both directions. Since surface reflectance in the channel 1 bandpass is very low for green vegetation, TOA reflectance is influenced more by atmospheric Rayleigh scattering which strengthens as view zenith increases. The surface bidirectional effect is, however, responsible for the weak asymmetric distribution with respect to nadir. Angular trends for channel 2 reflectance are distinct from those for channel 1. Overall, forward scattering is significantly weaker than backward scattering owing to the shadows cast by canopies. Angular trends for the four types of forest are similar but not identical. Reflectance variation over deciduous forest is more gradual than over coniferous forest, which may be associated with the clumping effect in conifer canopies [41]. For deciduous forest, reflectance shows an apparent local peak in the forward scattering direction at the viewing zenith angle of 43°. This angle is the same as solar zenith (see Fig. 7), and the enhanced reflectance can thus be attributed to specular reflection. Weak specular reflection is visible over rangeland and pasture as well. While channel 2 reflectance generally increases with view zenith in the backscattering direction, no hotspot is observed. This is because solar zenith is always larger than viewing zenith for backscattering, as shown in Fig. 7. Channel 2 reflectance is altered more by surface bidirectional effects as the atmospheric effect in channel 2 is relatively small. Hence, the angular patterns of channel 2 reflectance at the TOA are similar to those observed at the surface [40], [42].

Fig. 4. Same as Fig. 2, but for normalized reflectance and the resulting NDVI.

Fig. 5. Same as Fig. 3, but for normalized reflectance and the resulting NDVI.

Fig. 8 presents reflectances normalized to nadir view and a solar zenith of 45° by applying (1)–(6) to the data displayed in Fig. 6. Since the model of Wu et al. [21] has only four sets of coefficients (for cropland, grassland, forest, and barren land), reflectances observed over all types of forest were corrected using the same model. Despite this simplification, angular variations in TOA reflectances over these forests are reduced substantially. However, the specular reflection contribution remains essentially intact, most notably over deciduous forest as indicated by the small bump at a view zenith near 50°. This is not surprising since the kernels of Roujean et al. [35] do not take this effect into account. The correction would be somewhat better if BRDF's were derived and applied separately over different types of forest whose angular behaviors differ moderately, especially between deciduous and conifers. Indeed, we have used such an approach elsewhere [16]. The present BRDF model for forests is hybrid in that it was
Fig. 6. Reflectance from AVHRR composite during the period July 21–30, 1993 over the study area against view zenith angle over six land-cover types. Positive and negative angles denote forward- and backward-scattering directions, respectively. Displayed are 5000 1-km pixels sampled randomly from the entire data sets for each land-cover type.

devolved from measurements made over both deciduous and coniferous forests [21]. Imperfect correction stems also from the fact that surface and atmospheric conditions encountered in the development and application of the bidirectional models are not the same. This is probably the cause of the small, gradual increase in normalized reflectance toward backward scattering over cropland and rangeland/pasture to which grass model was applied. At any rate, the combined models are quite effective in reducing the angular variation of the reflectance measurements.
A bidirectional effect does not only affect reflectance, but also vegetation indices such as the NDVI. Fig. 9 shows the variations of NDVI derived from original (left panels) and normalized (right panels) reflectances in channels 1 and 2. The bidirectional effect is weaker for NDVI than for reflectance due to the similarity between channel 1 and channel 2. The maximum of NDVI change ranges from 0.1 to 0.2. After correction, trends in NDVI are barely visible for mixed-wood, deciduous, rangeland and pasture—and much weaker for conifer, transitional forest and cropland.

Since the bidirectional effect depends on sun angle and vegetation greenness [21], the angular trend of reflectance varies with season, as shown in Fig. 10. Instead of plotting reflectances as scatter points that would cause confusion between different months, Fig. 10 shows curves obtained by fitting the data with fourth-order polynomials for each month and land cover type, i.e.,

\[ \rho(\theta_v) = a_0 + a_1 \theta_v + a_2 \theta_v^2 + a_3 \theta_v^3 + a_4 \theta_v^4. \]  

Tests with the polynomials of different orders showed that (8) best preserves the angular trends displayed in scatter plots. The numbers associated with each curve in Fig. 10 quantifies the overall bidirectional effect. It is defined as

\[ \Delta \rho = \frac{\Delta \rho}{\bar{\rho}} \]  

\[ \bar{\rho} = \frac{1}{\theta_{\text{max}} - \theta_{\text{min}}} \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \rho(\theta_v) \, d(\theta_v) \]  

\[ \Delta \rho = \frac{1}{\theta_{\text{max}} - \theta_{\text{min}}} \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} |\rho(\theta_v) - \bar{\rho}| \, d(\theta_v) \]  

where \( \theta_{\text{min}} \) and \( \theta_{\text{max}} \) are the minimum and maximum of viewing zenith which are set to be \(-65^\circ\) and \(65^\circ\), respectively. \( \Delta \rho \) and \( \delta \rho \) denote, respectively, the overall absolute and relative BRDF effect as measured by the deviation of the fitted curve from a flat line. Note that the data used in Fig. 10 correspond to the last ten-day period in each month, not monthly mean. As indicated by both the curves and numbers, bidirectional effect depends on the spectral band, land cover, and month. It ranges from 0.17 to 0.39 and the mean of \( \delta \rho \) is 0.31 for channel 1 and 0.24 for channel 2. For both channels, the bidirectional effect is strongest in September. The mean \( \delta \rho \) over all types of biomes and for the two bands are equal to 0.27, 0.26, and 0.31 in May, July, and September, respectively. Solar zenith plays an essential role in modifying the bidirectional effect: the larger the solar zenith, the stronger the bidirectional effect is. It is thus more imperative to correct for this effect during early and late growing season than during the mid season, at least as far as the effect of the solar zenith angle is concerned. For the same reason, correction is more important at higher latitudes than at lower latitudes. It is seen from Fig. 10 that channel 1 reflectance over all forests except transitional forest is nearly independent of the season for viewing zenith less than 40°, but considerably higher in September than in July at large viewing angles. Seasonal variation of the bidirectional effect for channel 2 reflectance appears to be opposite to that of channel 1, i.e., more stable at large viewing zenith than at low-viewing zenith, except for transitional forest. The dependence of the bidirectional effect on season is slightly weaker for other cover types, but their reflectance value is very sensitive to season. In July, reflectance reaches minimum and maximum in channels 1 and 2, respectively, for cropland, rangeland, and pasture.

A novel feature of the model of Wu et al. [21] is the ability to account for the seasonal dependence of the bidirectional effect by using both solar zenith and NDVI as model inputs. This ability was tested with the same data as employed in Fig. 10. These data are independent of those used in the development of the model that were measured mostly over the U.S. [21]. Fig. 11 shows polynomial fits to reflectances normalized to the common geometry for individual pixels computed by the model of Wu et al. The values of \( \delta \rho \) are computed as above using (9)–(11). Significant reduction in the bidirectional effect is illustrated clearly in the comparison of Figs. 10 and 11. The curves in Fig. 11 become much flatter and the values of \( \delta \rho \) diminish. Most of the relative errors due to residual bidirectional effect decrease by a factor of three. The mean \( \delta \rho \) over all cover types decreased from 0.31 to 0.10 (channel 1) and from 0.24 to 0.07 (channel 2). Besides, the dependence on season is lessened considerably, suggesting that a single model does a reasonable job in accounting for the bidirectional effect throughout the season. Residual variations of much smaller magnitude remain—exhibiting two patterns. One is the low-frequency global trends as observed over all cover types for channel 1, except transitional forest, and over cropland for channel 2. The other is the high-frequency local fluctuations as observed over the majority of land covers in channel 2.

In view of the complexity in defining the functions of \( a_{ij} \) against NDVI [21] and the fact that the original model of Wu et al. performs well throughout the season, a simple method of returning the coefficients in [21] was adopted here. This
approach retains the same relationship of $a_{ij}$ to NDVI by selecting new coefficients $a'_{ij}$ to be proportional to the old ones, i.e.,

$$a'_{ij} = c_{ij} a_{ij}$$  \hspace{1cm} (12) \hspace{1cm} c_{ij} \text{ was determined by fitting the satellite data of interest to the following regression equation:}$$

$$\rho_j(\theta_s, \theta_v, \phi) = k_{0j} + k_{1j} a_{ij} f_1(\theta_s, \theta_v, \phi) + k_{2j} a_{ij} f_2(\theta_s, \theta_v, \phi)$$  \hspace{1cm} (13)
where $a_{ij}$ are given in Wu et al. [21]. It follows from the comparison of (5) and (13)

$$c_{ij} = \frac{k_{ij}}{k_{0ij}}. \tag{14}$$

Note that we intentionally use small "k" in (13) in lieu of capital "K" in (5) to differentiate the difference. The values of $c_{ij}$ (Table II) were determined from the AVHRR composite images over the study region prepared at ten-day intervals from April through September 1993. Use of these new coefficients leads to a new set of normalized reflectances. The polynomial fits of these data are presented in Fig. 12. Moderate improvement is achieved and the overall mean $\delta\rho$ becomes 0.08 and 0.05 for channels 1 and 2, respectively.
For many remote-sensing applications, the uncertainties of such magnitudes should be acceptable, considering that errors introduced in other steps could be significantly larger, e.g., calibration, atmospheric correction, etc. It is clear from the comparison between Figs. 11 and 12 that the decrease in $\delta \rho$ is mainly due to the weakening of global residual variation while local fluctuations remains essentially intact. This is because the kernels of Roujean et al. do not account for the effects of hot spot and specular reflection, especially for channel 2 reflectance. In this regard, the kernels derived from Li–Strahler geometric-optical BRDF [38], [43] are expected to perform better.
V. CONCLUDING REMARKS

Bidirectional effect deals with the dependence of reflectance on sun-target-sensor geometry. For many geophysical applications, such an effect must be accounted for in the use of remote-sensing data based on BRDF's. This study first analyzed the bidirectional effect and then applied a BRDF model developed by Wu et al. [21] to the AVHRR data measured over a region of 1500 × 1500 km² in central-western Canada that encompasses the BOREAS study region. Six primary land-cover types in northern areas were studied including four forest types (deciduous, conifers, mixed wood, transitional forest, cropland, and rangeland/pasture). The study is limited to satellite measurements at the TOA, although the methodology and procedure are equally applicable to ground
measurements obtained either from direct surface observations or from TOA reflectance measurements with atmospheric correction.

Two forms of AVHRR data were used in this study, single-day AVHRR images and clear-sky composites over ten-day periods. The bidirectional effect is clearly marked by the artificial discontinuity across the edge between two adjacent passes in single-day mosaic images. As a result of distinct viewing geometries, reflectance changes across the boundary by a factor of two to four, and NDVI differs by about 0.1. After bidirectional correction with the BRDF model of Wu et al. [21], changes in reflectance diminish radically but do not disappear completely and the discontinuity in NDVI vanishes. In the composite images, the effect is indicated by the strong
TABLE II
CORRECTION COEFFICIENTS (C1,2) FOR THE MODIFIED MODEL OF WU ET AL. [21]

<table>
<thead>
<tr>
<th>Channels</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixedwood forest</td>
<td>0.0</td>
<td>1.635</td>
<td>0.0</td>
<td>1.520</td>
</tr>
<tr>
<td>Deciduous forest</td>
<td>0.0</td>
<td>1.518</td>
<td>0.0</td>
<td>1.431</td>
</tr>
<tr>
<td>Conifer forest</td>
<td>0.0</td>
<td>1.853</td>
<td>0.0</td>
<td>1.580</td>
</tr>
<tr>
<td>Transition forest</td>
<td>0.0</td>
<td>1.580</td>
<td>0.0</td>
<td>1.471</td>
</tr>
<tr>
<td>Cropland</td>
<td>0.0</td>
<td>1.520</td>
<td>0.0</td>
<td>1.474</td>
</tr>
<tr>
<td>Rangland/Pasture</td>
<td>-0.980</td>
<td>1.719</td>
<td>0.007</td>
<td>1.320</td>
</tr>
</tbody>
</table>

variation of reflectance with viewing zenith and azimuth angles. The strongest and weakest reflection is observed in the extreme backward-scattering direction and near the nadir, respectively. While such a gross pattern is common to all cover types under study, perceptible differences exist in the angular trends even among different types of forests. The trend is also subject to significant seasonal change with maximum and minimum occurring in the late and mid-season, respectively. The model of Wu et al. removes much of the trends from the composites throughout the season. The remaining dependence of reflectance on viewing geometry is partially associated with the limitation of the model kernels [35]. BRDF models composed of more candidate kernels could be more effective at the expenses of larger data base and more computation.

This study demonstrates that a routine correction of satellite data with a wide range of imaging geometries for bidirectional effects is feasible with relatively simple models such as Wu et al. [21]. While the model is land-cover dependent, comparatively few land-cover types need to be distinguished (four, in the present case). This information could be obtained readily from AVHRR data. In fact, substantially more detailed land-cover maps have been derived from AVHRR seasonal composites [11], and the global 1-km AVHRR project [8], [44] aims to produce similar maps for various parts of the world. With such land-cover data set, the model of Wu et al. [21] can also be adjusted, as demonstrated above, to better reflect regional characteristics of the BRDF response. This approach can be implemented for operational processing of AVHRR data [16].

The adequacy of the same methodology for other sensors will depend on the extent to which their spatial resolution and viewing geometry differ from those of AVHRR. This is principally due to the mixed land-cover types within larger pixels (which tend to reduce the magnitude of the bidirectional effect) and the sun-sensor orientation which may lead to the hot spot or specular reflection effects (these were present in our data only in a minor way). Although the differences in spectral bands may be significant, we feel that the AVHRR channels 1 and 2 already encompass most of the range of functional BRDF dependencies that are likely to be encountered for northern cover types at comparable spatial resolutions. For application in other areas, both differences in cover type and in spectral dependence of BRDF, in addition to spatial resolution and viewing geometry, should be taken into account.

ACKNOWLEDGMENT

The authors would like to thank J.-L. Roujean (CNRM/METEO, France) and A. Wu (University of British Columbia, Canada) for useful discussions, J. Chen (CCRS, Ottawa, ON, Canada) for reviewing the manuscript, F. Huang for helping generate computer graphics. They would also like to thank P. Hurlburt and colleagues at the Manitoba Remote Sensing Center in Winnipeg, Man., Canada, for GEOCOMP data processing.

REFERENCES


Xianqin Li received the B.Sc. and M.Sc. degrees in climatology from Nanjing Institute of Meteorology, Nanjing, P.R. China, and the Ph.D. degree in satellite meteorology from McGill University, Montreal, Que., Canada, in 1983, 1986, and 1991, respectively.

He spent one year at the Atmospheric Environment Services of Canada as a NSERC Visiting Scientist. Since 1992, he has been a Research Scientist at the Canada Centre for Remote Sensing, Ottawa, ON. He has had over 30 journal articles published. Currently, he leads several research projects concerning the Earth’s radiation budgets and climate, remote sensing of terrestrial parameters, correction of artifacts in satellite measurements, and space-borne fire monitoring.

Johanna Chiar received the B.Sc. degree in agricultural engineering from the University of Agriculture, Prague, Czechoslovakia, in 1967, the M.Sc. degree in soil science from the University of Guelph, Guelph, Ont., Canada, in 1971, and the Ph.D. degree in geography and remote sensing, from the University of Kansas, Lawrence, KS, in 1975.

Between 1975 and 1991, she worked as a Scientist and Head of the Applications Development Section at the Canada Centre for Remote Sensing (CCRS), Ottawa, ON. Presently, she is a Research Scientist and Head of the CCRS Environment Monitoring Section. Her research interest is on the use of satellite observations for monitoring and modeling environmental change over land at regional to continental scales. He is involved in several interdisciplinary projects, including the boreal ecosystem-atmosphere study (BOREAS) and the northern boreal observation and modeling experiment (NBIOEME).

Xingnian Zheng was born in 1962. He received the B.Sc. and M.Sc. degrees from Nanjing University, Nanjing, P.R. China, in 1984 and 1987, respectively. Currently, he is an Associate Professor at the Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing, P.R. China. In 1995, he worked at the Canada Centre for Remote Sensing, Ottawa, ON, as a Visiting Scholar. He has had more than 40 articles, books, and maps published. His main research interests include remote sensing, geographical information system (GIS), and modeling, as well as their applications to resources and the environment.

Louis Moreau received the B.Sc. degree in physics from Laval University, Quebec City, Canada, and the M.Sc. degree in atmospheric and oceanic sciences from McGill University, Montreal, Quebec, Canada, in 1991 and 1993, respectively.

After 1993, he joined Intermap Information Technologies Ltd. (formerly known as Intera), Ottawa, Canada. He has worked on projects related the photosynthetically active radiation, radiation modeling, and detection of forest fires at the Canada Centre for Remote Sensing, Ottawa, ON, Canada.

Hung Ly, photograph and biography not available at the time of publication.