Radiation (35)
Surface solar radiation budget (17)
Barker, H. W., and Z. Li, 1995: Improved simulation of clear-sky shortwave radiative transfer in the CCC-GCM, J. Climate, 8, 2213-2223.
Barker, H., Z. Li, and J.-P. Blanchet, 1994: Radiative characteristics of the Canadian Climate Centre second-generation general circulation model, J. Climate, 7, 1070-1091.
Huang, G., Z. Li, X. Li, S. Liang, K. Yang, D. Wang, and Y. Zhang, 2019: Estimating surface solar irradiance from satellites: past, present, and future perspectives, Remote Sens. Environ., 233, doi:10.1016/j.rse.2019.111371.
Li, R., D. Wang, Z. Wang, S. Liang, Z. Li, Y. Xie, and J. He, 2024: Transformer approach to nowcasting solar energy using geostationary
satellite data, Appl. Energy, 377, 124387, doi:10.1016/j.apenergy.2024.124387.
Li, Z., 1995: Intercomparison between two satellite-based products of net surface shortwave radiation, J. Geophys. Res. Atmos., 100, 3221-3232.
Li, Z., 1998: Influence of absorbing aerosols on the inference of solar surface radiation budget and cloud absorption, J. Climate, 11, 5-17.
Li, Z., and H. G. Leighton, 1993: Global climatologies of solar radiation budgets at the surface and in the atmosphere from 5 years of ERBE data, J. Geophys. Res. Atmos., 98, 4919-4930.
Li, Z., and L. Garand, 1994: Estimation of surface albedo from space: a parameterization for global application, J. Geophys. Res. Atmos., 99, 8335-8350.
Li, Z., and L. Kou, 1998: The direct radiative effect of smoke aerosols on atmospheric absorption of visible sunlight, Tellus (B), 50, 543-554.
Li, Z., H. G. Leighton, K. Masuda, and T. Takashima, 1993: Estimation of SW flux absorbed at the surface from TOA reflected flux, J. Climate, 6, 317-330.
Li, Z., H. G. Leighton, and R. D. Cess, 1993: Surface net solar radiation estimated from satellite measurements: comparisons with tower observations, J. Climate, 6, 1764-1772.
Li, Z., T. Charlock, and C. Whitlock, 1995: Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data, J. Climate, 8, 315-328.
Li, Z., L. Moreau, and A. Arking, 1997: On solar energy disposition: a perspective from observation and modeling, Bull. Amer. Meteorol. Soc., 78, 53-70.
Li, Z., M. Cribb, F.-L. Chang, A. Trishchenko, and L. Yi, 2005: Natural variability and sampling errors in solar radiation measurements for model validation over the Atmospheric Radiation Measurement Southern Great Plains region, J. Geophys. Res. Atmos., 110, D15S19, doi:10.1029/2004JD005028.
Masuda, K., H. G. Leighton, and Z. Li, 1995: A new parameterization for the determination of solar flux absorbed at the surface from satellite measurements, J. Climate, 8, 1615-1629.
Pinker, R., R. Frouin, and Z. Li, 1995: A review of satellite methods to derive surface shortwave irradiance, Remote Sens. Environ., 51, 108-124.
Zhang, Y., Z. Li, and A. Macke, 2002: Retrieval of surface solar radiation budget under ice cloud sky: uncertainty analysis and parameterization, J. Atmos. Sci., 59, 2951-2965.
Surface spectral radiation: PAR and UV radiation (9)
Ciren, P., and Z. Li, 2001: Anisotropic reflection of UV radiation at the top of the atmosphere: characteristics and models obtained from Meteor 3/TOMS, J. Geophys. Res. Atmos., 106, 4741-4755.
Ciren, P., and Z. Li, 2003: Long-term global earth surface ultraviolet radiation exposure derived from ISCCP and TOMS satellite measurements, J. Agri. Forest. Meteorol., 120, 51-68.
Li, Z., and L. Moreau, 1996: A new approach for remote sensing of canopy-absorbed photosynthetically active radiation, I: Total surface absorption, Remote Sens. Environ., 55, 175-191.
Li, Z., L. Moreau, and J. Cihlar, 1997: Estimation of the photosynthetically active radiation absorbed at the surface, J. Geophys. Res. Atmos., 102, 29,717-29,727.
Li, Z., P. Wang, and J. Cihlar, 2000: A simple and efficient method for retrieving surface UV radiation dose rate from satellite, J. Geophys. Res. Atmos., 105, 5027-5036.
Li, Z., L. Moreau, and H. W. Barker, 2005: A general two-stream algorithm for retrieving spectral surface albedo, Can. J. Remote Sens., 31, 391-399.
Moreau, L., and Z. Li, 1996: A new approach for remote sensing of canopy-absorbed photosynthetically active radiation, II: Proportion of canopy absorption, Remote Sens. Environ., 55, 192-204.
Wang, P., Z. Li, and D. Wardle, 2000: Validation of an UV inversion algorithm using satellite and surface measurements, J. Geophys. Res. Atmos., 105, 5037-5048.
Zheng, Y., Y. He, Y. Yang, and Z. Li, 2000: Effects of increased UV-B upon the ecosystem of grown wheat in China, J. Photosci., 9(4), 166-169.
Surface latent heat flux (2)
Wang, K., Z. Li, and M. Cribb, 2006: Estimation of evaporative fraction from a combination of day and night land surface temperature and NDVI: a new method to determine the Priestley-Taylor parameter, Remote Sens. Environ., 102, 293-305.
Wang, K., P. Wang, Z. Li, M. Cribb, and M. Sparrow, 2007: A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature, J. Geophys. Res. Atmos., 112, D15107, doi:10.1029/2006JD008351.
Radiation in mountainous regions (7)
Li, Z., and D. Weng, 1987: A model to determine topographic parameters, Acta Geogr. Sin., 42, 269-278.
Li, Z., and D. Weng, 1987: A parameterization model for calculating diffuse radiation over rugged terrain, Jour. Meteorol., 10, 139-151.
Li, Z., and D. Weng, 1987: Simulations of the reflected radiation from the surrounding terrains, Geog. Res., 6, 42-49.
Li, Z., and D. Weng, 1988: A computer model for calculating the duration of sunshine in mountainous areas, Chinese Sci. Bull., 33, 1624-1627.
Li, Z., and D. Weng, 1989: Distribution and calculation of the solar diffuse radiation incident on slopes, Acta Meteorol. Sin., 3, 490-497.
Li, Z., and D. Weng, 1989: A numerical model for hilly-land global radiation, Acta Meteorol. Sin., 3, 661-668.
Li, Z., and D. Weng, 1990: Numerical simulations of surface radiation field in a hilly country, Acta Meteorol. Sin., 4, 81-91.
Clouds and Precipitation (72)
Cloud Radiative Effect and Cloud Absorption Anomaly (13)
Barker, H. W., and Z. Li, 1997: Interpreting shortwave albedo-transmittance plots: true or apparent anomalous absorption, Geophys. Res. Lett., 24, 2023-2026.
Chang, F.-L., Z. Li, and S. A. Ackerman, 2000: Examining the relationship between cloud and radiation quantities derived from satellite observations and model calculations, J. Climate, 13, 3842-3859.
Halthore, R. N., D. Crisp, S. E. Schwartz, G. P. Anderson, A. Berk, B. Bonnel, O. Boucher, F.-L. Chang, M.-D. Chou, E. E. Clothiaux, P. Dubuisson, B. Fomin, Y. Fouquart, S. Freidenreich, C. Gautier, S. Kato, I. Laszlo, Z. Li, et al., 2005: Intercomparison of shortwave radiative transfer codes and measurements, J. Geophys. Res. Atmos., 110, D11206, doi:10.1029/2004JD005293.
Li, Z., 2004: On the solar radiation budget and cloud absorption anomaly debate, In "Observation, Theory, and Modeling of the Atmospheric Variability", (ed. Zhu), World Scientific Pub. Co., p437-456.
Li, Z., and L. Moreau, 1996: Alteration of atmospheric solar absorption by clouds: simulation and observation, J. Appl. Meteorol., 35, 653-670.
Li, Z., and A. Trishchenko, 2001: Quantifying uncertainties in determining SW cloud radiative forcing and cloud absorption due to variability in atmospheric conditions, J. Atmos. Sci., 58, 376-389.
Li, Z., H. Barker, and L. Moreau, 1995: The variable effect of clouds on atmospheric absorption of solar radiation, Nature (article), 376, 486-490.
Li, Z., A. Trishchenko, H. W. Barker, G. L. Stephens, and P. T. Partain, 1999: Analyses of Atmospheric Radiation Measurement (ARM) programs’s Enhanced Shortwave Experiment (ARESE) multiple data sets for studying cloud absorption, J. Geophys. Res. Atmos., 104, 19127-19134.
Li, Z., M. Cribb, and A. Trishchenko, 2002: Impact of surface inhomogeneity on solar radiative transfer under overcast conditions, J. Geophys. Res. Atmos., 107, 10.1029/2001JD000976.
Li, Z., T. P. Ackerman, W. Wiscombe, and G. L. Stephens, 2003: Have clouds darkened since 1995? Science, 302, 1151-1152.
Li, Z., W. Wiscombe, G. L. Stephens, and T. P. Ackerman, 2004: Response to "Disagreements over cloud absorption", Science, 305, 1240.
Nemesure, S., R. D. Cess, E. G. Dutton, J. J. DeLuisi, Z. Li, and H. G. Leighton, 1994: Impact of clouds on the shortwave radiation budget of the surface-atmosphere system for snow-covered surfaces, J. Climate, 7, 579-585.
Zheng, Y., Y. Zhu, D. Rosenfeld, and Z. Li, 2021: Climatology of cloud-top radiative cooling in marine shallow clouds, Geophys. Res. Lett., 48, e2021GL094676, doi:10.1029/2021GL094676. Supplement
Cloud identification (5)
Li, Z., and H. G. Leighton, 1991: Scene identification and its effect on cloud radiative forcing in the Arctic, J. Geophys. Res. Atmos., 96, 9175-9188.
Sakellariou, N., H. G. Leighton, and Z. Li, 1993: Identification of clear and cloudy pixels at high latitudes from AVHRR radiances, Int. J. Remote Sensing, 14, 2005-2024, doi:10.1080/01431169308954017.
Wei, J., W. Huang, Z. Li, L. Sun, X. Zhu, Q. Yuan, L. Liu, and M. C. Cribb, 2020: Cloud detection for Landsat imagery by combining the random forest and superpixels extracted via energy-driven sampling segmentation approaches, Remote Sens. Environ., 248, 112005, doi:10.1016/j.rse.2020.112005.
Yuan, T., and Z. Li, 2010: General macro- and micro-physical properties of deep convective clouds as observed by MODIS, J. Climate, 23, 3457-3473.
Yuan, T., J. V. Martins, Z. Li, and L. A. Remer, 2010: Estimating glaciation temperature of deep convective clouds with remote sensing data, Geophys. Res. Lett., 37, doi: 10.1029/2010GL042753.
Cloud fraction, optical depth, effective radius, and droplet number (9)
Barker, H., A. Marshak, W. Szyrmer, A. Trishchenko, J.-P. Blanchet, and Z. Li, 2002: Inference of cloud optical depth from aircraft-based solar radiometric measurements, J. Atmos. Sci., 59, 2093-2111.
Chang, F.-L., and Z. Li, 2002: Estimating the vertical variation of cloud droplet effective radius using multispectral near-infrared satellite measurements, J. Geophys. Res. Atmos., 107(D15), doi:10.1029/2001JD000766.
Chang, F.-L., and Z. Li, 2003: Retrieving vertical profiles of water-cloud droplet effective radius: algorithm modification and preliminary application, J. Geophys. Res. Atmos., 108, D(24), 10.1029/2003JD003906.
Li, Z., F. Zhao, J. Liu, M. Jiang, C. Zhao, and M. Cribb, 2014: Opposite effects of absorbing aerosols on the retrievals of cloud optical depth from spaceborne and ground-based measurements, J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021053.
Liu, J., Z. Li, Y. Zheng, C. Chiu, F. Zhao, C. Li, and M. Cribb, 2013: Cloud optical and microphysical properties derived from ground-based remote sensing over a site in the Yangtze Delta Region, J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50648.
Trishchenko, A., Z. Li, and F.-L. Chang, 2001: Cloud optical depths and TOA fluxes: Comparison between satellite and surface retrievals from multiple platforms, Geophys. Res. Lett., 28, 979-982.
Vant-Hull, B., A. Marshak, L. Remer, and Z. Li, 2007: The effects of scattering angle and cumulus cloud geometry on satellite retrievals of cloud drop effective radius, IEEE Geosci. Remote Sens. Lett., 45, 1039-1045.
Zhang, H., Y. Zheng, and Z. Li, 2024: Improving low-cloud fraction prediction through machine learning, Gephys. Res. Lett., 51, e2024GL109735, doi:10.1029/2024GL109735. Supplement
Zhu, Y., D. Rosenfeld, and Z. Li, 2018: Under what conditions can we trust retrieved cloud drop concentrations in broken marine stratocumulus?, J. Geophys. Res. Atmos., 123, doi:10.1029/2017JD028083.
Cloud layers (11)
Chang, F.-L., and Z. Li, 2005: A new method for detection of cirrus overlapping water clouds and determination of their optical properties, J. Atmos. Sci., 62, 3993-4009.
Chang, F.-L., and Z. Li, 2005: A near-global climatology of single-layer and overlapped clouds and their optical properties retrieved from Terra/MODIS data using a new algorithm, J. Climate, 18, 4752-4771.
Liu, J., Z. Li, Y. Zheng, and M. Cribb, 2015: Cloud-base distribution and cirrus properties based on micropulse lidar measurements at a site in southeastern China, Adv. Atmos. Sci., 32(7), 991-1004, doi:10.1007/s00376-014-4176-2.
Peng, J., H. Zhang, and Z. Li, 2014: Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations, Adv. Atmos. Sci., 31, 593-603, doi:10.1007/s00376-013-3055-6.
Wang, Y., C. Zhao, Z. Dong, Z. Li, S. Hu, T. Chen, F. Tao, and Y. Wang, 2018: Improved retrieval of cloud base heights from ceilometer using a non-standard instrument method, Atmos. Res., 202, 148-155, doi:10.1016/j.atmosres.2017.11.021.
Yoo, H., and Z. Li, 2012: Evaluation of cloud properties in the NOAA/NCEP global forecast system using multiple satellite products, Clim. Dyn., doi:10.1007/s00382-012-1430-0.
Yoo, H., Z. Li, Y.-T. You, S. Lord, F. Weng, and H. W. Barker, 2013: Diagnosis and testing of low-level cloud parameterizations for the NCEP/GFS model satellite and ground-based measurements, Clim. Dynam., doi:10.1007/s00382-013-1884-8.
Zhang, J., H. Chen, Z. Li, X. Fan, L. Peng, Y. Yu, and M. Cribb, 2010: Analysis of cloud layer structure in Shouxian, China using a RS92 radiosonde aided by a 95-GHz cloud radar, J. Geophys. Res. Atmos., 115, D00K30, doi:10.1029/2010JD014030.
Zhang, Z., Z. Li, H. Chen, and M. Cribb, 2013: Validation of a radiosonde-based cloud layer retrieval method using ground-based remote sensing methods at multiple ARM sites, J. Geophys. Res. Atmos., 118, 846-858, doi:10.1029/2012JD018515.
Zhang, J., Z. Li, H. Chen, H. Yoo, and M. Cribb, 2014: Cloud vertical distribution from radiosonde, remote sensing, and model simulations, Clim. Dynam., 43, doi:10.1007/s00382-014-2142-4.
Zhao, C., Y. Wang, Q. Wang, Z. Li, Z. Wang, and H. Yan, 2014: A new cloud and aerosol layer detection method based on micropulse lidar measurements, J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021760.
Precipitation (5)
Chen, R., F. Chang, Z. Li, R. Ferraro, and F. Weng, 2007: Impact of the vertical variation of cloud droplet size on the estimation of cloud liquid water path and rain detection, J. Atmos. Sci., 64, 3843-3853.
Chen, R., R. Wood, Z. Li, R. Ferraro, and F.-L. Chang, 2008: Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data, J. Geophys. Res. Atmos., 113, doi: 10.1029/2007/JD009596.
Chen, R., Z. Li, R. J. Kuligowski, R. Ferraro, and F. Weng, 2011: A study of warm rain detection using A-Train satellite data, Geophys. Res. Lett., 38, L04804, doi:10.1029/2010GL046217.
Guo, J., P. Zhai, L. Wu, M. Cribb, Z. Li, Z. Ma, F. Wang, D. Chu, P. Wang, and J. Zhang, 2014: Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet, Int. J. Climatol., 34(9), doi:10.1002/joc.3886.
Guo, J., H. Liu, Z. Li, D. Rosenfeld, M. Jiang, W. Xu, J. H. Jiang, J. He, D. Chen, M. Min, and P. Zhai, 2018: Aerosol-induced changes in the vertical structure of precipitation: a perspective of TRMM precipitation radar, Atmos. Chem. Phys., 18, 13,329-13,343, doi:10.5194/acp-18-13329-2018.
Cloud condensation nuclei (11)
Jiang, S., F. Zhang, J. Ren, L. Chen, X. Yan, J. Liu, Y. Sun, and Z. Li, 2021: Evaluation of the contribution of new particle formation to cloud droplet number concentration in the urban atmosphere, Atmos. Chem. Phys., 21, 14,293-14,308, doi:10.5194/acp-21-14293-2021.
Liu, J., Y. Zheng, Z. Li, and M. Cribb, 2011: Analysis of cloud condensation nuclei properties at a polluted site in southeastern China during the AMF-China campaign, J. Geophys. Res. Atmos., 116, doi:10.1029/2011JD016395.
Liu, J., F. Zhang, W. Xu, L. Chen, J. Ren, S. Jiang, Y. Sun, and Z. Li, 2021: A large impact of cooking organic aerosol (COA) on particle hygroscopicity and CCN activity in urban atmosphere, J. Geophys. Res. Atmos., 126, e2020JD033628, doi:10.1029/2020JD033628. Supplement
Lv, M., Z. Wang, Z. Li, T. Luo, R. Ferrare, D. Liu, D. Wu, J. Mao, B. Wan, F. Zhang, and Y. Wang, 2018: Retrieval of cloud condensation nuclei number concentration profiles from lidar extinction and backscatter data , J. Geophys. Res. Atmos., 123, 6082-6098, doi:10.1029/2017JD028102.
Ren, J., F. Zhang, Y. Wang, D. Collins, X. Fan, X. Jin, W. Xu, Y. Sun, M. Cribb, and Z. Li, 2018: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in Beijing, Atmos. Chem. Phys., 18, 6907-6921, doi:10.5194/acp-18-6907-2018.
Rosenfeld, D., Y. Zheng, E. Hashimshoni, M. L. Pohlker, A. Jefferson, C. Pohlker, X. Yu, Y. Zhu, Z. Yue, B. Fischman, Z. Li, D. Giguzin, T. Goren, P. Artaxo, H. M. J. Barbosa, U. Poschl, and M. O. Andreae, 2016: Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers, P. Natl. Acad. Sci. USA, doi:10.1073/pnas.1514044113.
Wang, Y.-X., Y.-Y. Wang, X. Song, Y. Shang, Y. Zhou, X. Huang, and Z. Li, 2023: The impact of particulate pollution control on aerosol hygroscopicity and CCN activity in North China, Environ. Res. Lett., 18, 074028, doi:10.1088/1748-9326/acde91. Supplement
Zhang, F., Z. Li, Y. Li, Y. Sun, Z. Wang, P. Li, L. Sun, P. Wang, M. Cribb, C. Zhao, T. Fan, X. Yang, and Q. Wang, 2016: Impacts of organic aerosols and its oxidation level on CCN activity from measurements at a suburban site in China, Atmos. Chem. Phys., 16, 5413-5425, doi:10.5194/acp-16-5413-2016.
Zhang, F., Y. Wang, J. Peng, J. Ren, D. Collins, R. Zhang, Y. Sun, X. Yang, and Z. Li, 2017: Uncertainty in predicting CCN activity of aged and primary aerosols, J. Geophys. Res. Atmos., 122, doi:10.1002/2017JD027058.
Zhang, F., J. Ren, T. Fan, L. Chen, W. Xu, Y. Sun, R. Zhang, J. Liu, S. Jiang, X. Jin, H. Wu, S. Li, M. C. Cribb, and Z. Li, 2019: Significantly enhanced aerosol CCN activity and number concentrations by nucleation-initiated haze events: a case study in urban Beijing, J. Geophys. Res. Atmos., 124, 14,102-14,113, doi:10.1029/2019JD031457. Supplement
Zhang, R., Y. Wang, Z. Li, Z. Wang, R. R. Dickerson, X. Ren, H. He, F. Wang, Y. Gao, X. Chen, J. Xu, Y. Cheng, and H. Su, 2022: Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain, Atmos. Chem. Phys., 22, 14,879-14,891, doi:10.5194/acp-22-14879-2022. Supplement
Updraft speed at cloud base (4)
Zheng, Y., D. Rosenfeld, and Z. Li, 2015: Satellite inference of thermals and cloud-base updraft speeds based on retrieved surface and cloud-base temperatures, J. Atmos. Sci., 72, doi:10.1175/JAS-D-14-0283.1.
Zheng, Y., D. Rosenfeld, and Z. Li, 2016: Quantifying cloud base updraft speeds of marine stratocumulus from cloud top radiative cooling, Geophys. Res. Lett., 43, doi:10.1002/2016GL071185.
Zheng, Y., M. Sakradzija, S.-S. Lee, and Z. Li, 2020: Theoretical understanding of the linear relationship between convective updrafts and cloud-base height for shallow cumulus clouds. Part II: Continental conditions, J. Atmos. Sci., 77, 1313-1328, doi:10.1175/JAS-D-19-0301.1.
Zheng, Y., D. Rosenfeld, and Z. Li, 2021: Sub-cloud turbulence explains cloud-base updrafts for shallow cumulus ensembles: first observational evidence, Geophys. Res. Lett., 48, e2020GL091881, doi:10.1029/2020GL091881.
Cloud-surface coupling (14)
Li, S., J. Guo, X. Zhang, B. Tong, T. Su, J. Wei, and Z. Li, 2024: Preference of afternoon precipitation over dry soil in the North China Plain during warm seasons, J. Geophys. Res. Atmos., 129, e2023JD040641, doi:10.1029/2023JD040641. Supplement
Su, T., and Z. Li, 2024: Decoding the dialogue between clouds and land, EOS, 105, doi:10.1029/2024EO240072.
Su, T., Z. Li, and Y. Zheng, 2023: Cloud-surface coupling alters the
morning transition from stable to unstable boundary layer, Geophys. Res. Lett., 50, e2022GL102256, doi:10.1029/2022GL102256. Supplement
Zhang, H., Y. Zheng, S. S. Lee, and Z. Li, 2023: Surface-atmosphere decoupling prolongs cloud lifetime under warm advection due to reduced entrainment drying, Geophys. Res. Lett., 50, e2022GL101663, doi:10.1029/2022GL101663. Supplement
Zhang, H., T. Su, Y. Zheng, and Z. Li, 2024: First assessment of cloud-land coupling in LASSO large-eddy simulations, Geophys. Res. Lett., 51, e2024GL109774, doi:10.1029/2024GL109774. Supplement
Zhang, H., Y. Zheng, and Z. Li, 2024: Evaluation of stratocumulus evolution under contrasting temperature advections in CESM2 through a Lagrangian framework, Geophys. Res. Lett., 51, e2023GL106856, doi:1029/2023GL106856. Supplement
Zhang, L., X. Dong, A. Kennedy, B. Xi, and Z. Li, 2017: Evaluation of NASA GISS Post-CMIP5 single column model simulated clouds and precipitation using ARM Southern Great Plains observations, Adv. Atmos. Sci., 34, 306-320, doi:10.1007/s00376-016-5254-4.
Zheng, Y., and Z. Li, 2019: Episodes of warm-air advection causing cloud-surface decoupling during the MARCUS, J. Geophys. Res. Atmos., 124, doi:10.1029/2019JD030835.
Zheng, Y., D. Rosenfeld, and Z. Li, 2018: Estimating the decoupling degree of subtropical marine stratocumulus decks from satellite, Geophys. Res. Lett., 45, doi:10.1029/2018GL078382.
Zheng, Y., D. Rosenfeld, and Z. Li, 2018: The relationships between cloud-top radiative cooling rates, surface latent heat fluxes, and cloud-base heights in marine stratocumulus , J. Geophys. Res. Atmos., 123, doi:10.1029/2018JD028579.
Zheng, Y., D. Rosenfeld, Y. Zhu, and Z. Li, 2019: Satellite-based estimation of cloud top radiative cooling rate for marine stratocumulus, Geophys. Res. Lett., 46, 4485-4494, doi:10.1029/2019GL082094. Supplement
Zheng, Y., D. Rosenfeld, and Z. Li, 2020: A more general paradigm for understanding the decoupling of stratocumulus-topped boundary layers: the importance of horizontal temperature advection, Geophys. Res. Lett., 47, doi:10.1029/2020GL087697. Supplement
Zheng, Y., H. Zhang, and Z. Li, 2021: Role of surface latent heat flux in shallow cloud transitions: a mechanism-denial LES study, J. Atmos. Sci., 78, 2709-2723, doi:10.1175/JAS-D-20-0381.1.
Zheng, Y., H. Zhang, D. Rosenfeld, S.-S. Lee, T. Su, and Z. Li, 2021: Idealized large-eddy simulations of stratocumulus advecting over cold water. Part I: Boundary layer decoupling, J. Atmos. Sci., 78, 4089-4102, doi:/10.1175/JAS-D-21-0108.s1.
Aerosol-Cloud-Radiation-Precipitation Interactions (64)
Fundamentals of aerosol-cloud interactions and modeling (9)
Christensen, M. W., A. Gettelman, J. Cermak, G. Dagan, M. Diamond, A. Douglas, G. Feingold, F. Glassmeier, T. Goren, D. P. Grosvenor, E. Gryspeerdt, R. Kahn, Z. Li, P.-L. Ma, F. Malavelle, I. L. McCoy, D. T. McCoy, G. McFarquhar, J. Mülmenstädt, S. Pal, A. Possner, A. Povey, J. Quaas, D. Rosenfeld, A. Schmidt, R. Schrödner, A. Sorooshian, P. Stier, V. Toll, D. Watson-Parris, R. Wood, M. Yang, and T. Yuan, 2022: Opportunistic experiments to constrain aerosol effective radiative forcing, Atmos. Chem. Phys., 22, 641-674, doi:10.5194/acp-22-641-2022.
Supplement
Jiang, M., J. Feng, Z. Li, R. Sun, Y.-T. Hou, Y. Zhu, B. Wan, J. Guo, and M. Cribb, 2017: Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast, Atmos. Chem. Phys., 17, 13,967-13,982, doi:10.5194/acp-17-13967-2017.
Lee, S. S., B.-G. Kim, S. S. Yum, K.-H. Seo, C.-H. Jung, J. S. Um, Z. Li, J. Hong, K.-H. Chang, and J.-Y. Jeong, 2017: Effects of aerosol on evaporation, freezing and precipitation in a multiple cloud system, Clim. Dynam., 48, doi:10.1007/s00382-016-3128-1.
Lee, S. S., Z. Li, J. Mok, M.-H. Ahn, B.-G. Kim, Y.-S. Choi, C.-H. Jung, and H. L. Yoo, 2017: Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system, Clim. Dynam., 49, 3905-3921, doi:10.1007/s00382-017-3552-x.
Lee, S. S., Z. Li, Y. Zhang, H. Yoo, S. Kim, B.-G. Kim, Y.-S. Choi, J. Mok, J. Um, K. O. Choi, and D. Dong, 2018: Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols, Atmos. Chem. Phys., 18, 13-29, doi:10.5194/acp-18-13-2018.
Li, Z., 2020: A review of the impact of aerosols on weather, climate and environment in China, Trans Atmos. Sci., 43(1).
Li, Z., 2020: Intensified investigations of East Asian aerosols and climate, Eos, 101, doi:10.1029/2020EO140980. Version in Chinese
Li, Z., D. Rosenfeld, and J. Fan, 2017: Aerosols and their impact on radiation, clouds, precipitation, and severe weather events, Oxford Research Encyclopedias, doi:10.1093/acrefore/9780199389414.013.126.
Li, Z., Y. Wang, J. Guo, C. Zhao, M. C. Cribb, X. Dong, et al., 2019: East Asian Study of Tropospheric Aerosols and their Impact on Regional Clouds, Precipitation, and Climate (EAST-AIRCPC), J. Geophys. Res. Atmos., 124, doi:10.1029/2019JD030758.
Impact of aerosols on shallow warm clouds and light rain (19)
Chen, T., Z. Li, R. A. Kahn, C. Zhao, D. Rosenfeld, J. Guo, W. Han, and D. Chen, 2021: Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China, Atmos. Chem. Phys., 21, 6199-6220, doi:10.5194/acp-21-6199-2021. Supplement
Fan, J., L. R. Leung, Z. Li, H. Morrison, H. Chen, Y. Zhou, Y. Qian, and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: results from bin and bulk microphysics, J. Geophys. Res. Atmos., 117, D00K36, doi:10.1029/2011JD016537.
Guo, J., M. Deng, J. Fan, Z. Li,, Q. Chen, P. Zhai, Z. Dai, and X. Li, 2014: Precipitation and air pollution at mountain and plain stations in northern China: insights gained from observations and modeling, J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021161.
Guo, J., T. Su, Z. Li, Y. Miao, J. Li, H. Liu, H. Xu, M. Cribb, and P. Zhai, 2017: Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols, Geophys. Res. Lett., 44, doi:10.1002/2017GL073533.
Guo, J., T. Su, D. Chen, J. Wang, Z. Li, Y. Lv, X. guo, H. Liu, M. C. Cribb, and P. Zhai, 2019: Declining summertime local-scale precipitation frequency over China and the United States: the disparate roles of aerosols, Geophys. Res. Lett., 46(22), 13,281-13,289, doi:10.1029/2019GL085442. Supplement
Liu, J., and Z. Li, 2014: Estimation of cloud condensation nuclei concentration from aerosol optical properties: influential factors and uncertainties, Atmos. Chem. Phys., 14, doi:10.5194/acp-14-471-2014.
Liu, J., and Z. Li, 2018: First surface-based estimation of the aerosol indirect effect over a site in southeastern China, Adv. Atmos. Sci., 35(2), 169-181, doi:10.1007/s00376-017-7106-2.
Liu, J., and Z. Li, 2018: Significant underestimation in the optically-based estimation of the aerosol first indirect effect induced by the aerosol swelling effect, Geophys. Res. Lett., 45, doi:10.1029/2018GL077679. Supplement
Liu, J., and Z. Li, 2019: Aerosol properties and their influences on low warm clouds during the Two-Column Aerosol Project, Atmos. Chem. Phys., 19, 9515-9529, doi:10.5194/acp-19-9515-2019.
Liu, J., Z. Li, and M. Cribb, 2016: Response of marine boundary layer cloud properties to aerosol perturbations associated with meteorological conditions from the 19-month AMF-Azores campaign, J. Atmos. Sci., 73, doi:10.1175/JAS-D-15-0364.1.
Quaas, J., A. Arola, B. Cairns, M. Christensen, H. Deneke, A. M. L. Ekman, G. Feingold, A. Fridlind, E. Gryspeerdt, O. Hasekamp, Z. Li, and Coauthors, 2020: Constraining the Twomey effect from satellite observations: issues and perspectives, Atmos. Chem. Phys., 20, 15,079-15,099, doi:10.5194/acp-20-15079-2020.
Su, T., Z. Li, N. Roldan Henao, Q. Luan, and F. Yu, 2024: Constraining effects of aerosol-cloud interaction by accounting for coupling between cloud and land surface, Sci. Adv., 10, eadl5044, doi:10.1126/sciadv.adl5044. Supplement Media Coverage
Wang, F., Z. Li, Q. Jiang, G. Wang, S. Jia, J. Duan, and Y. Zhou, 2019: Evaluation of hygroscopic cloud seeding in liquid-water clouds: a feasibility study, Atmos. Chem. Phys., 19, 14,967-14,977, doi:10.5194/acp-19-14967-2019. Supplement
Wang, F., Z. Li, D. Zhao, X. Ma, Y. Gao, J. Sheng, P. Tian, and M. C. Cribb, 2022: An airborne study of the aerosol effect on the dispersion of cloud droplets in a drizzling marine stratocumulus cloud over eastern China, Atmos. Res., 265, doi:10.1016/j.atmosres.2021.105885. Supplement
Wu, Y., Y. Wang, Y. Zhou, X. Liu, Y. Tang, Y. Wang, R. Zhang, and Z. Li, 2022: The wet scavenging of air pollutants through artificial precipitation enhancement: a case study in the Yangtze River Delta, Front. Environ. Sci., 10, doi:10.3389/fenvs.2022.1027902. Supplement
Yang, X., M. Ferrat, and Z. Li, 2013: New evidence of orographic precipitation suppression by aerosols in central China, Meteorol. Atmos. Phys., doi:10.1007/s00703-012-0221-9.
Yang, Y., J. Fan, L. R. Leung, C. Zhao, Z. Li, and D. Rosenfeld, 2016: Mechanisms contributing to suppressed precipitation in Mt. Hua of central China. Part I: Mountain valley circulation, J. Atmos. Sci., 73(3), 1351-1366, doi:10.1175/JAS-D-15-0233.1.
Yuan, T., Z. Li, R. Zhang, and J. Fan, 2008: Increase of cloud droplet size with aerosol optical depth: An observation and modeling study, J. Geophys. Res. Atmos., 113, D04201, doi:10.1029/2007JD008632.
Zhu, Y., D. Rosenfeld, X. Yu, and Z. Li, 2015: Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth, J. Geophys. Res. Atmos., 120, 7726-7736, doi:10.1002/2015JD023547.
Impact of aerosols on deep convective clouds, heavy rain, and lightning (22)
Allen, D., K. Pickering, M. Avery, Z. Li, S. Shan, C. A. Morales Rodriguez, and P. Artaxo, 2024: A CloudSat and CALIPSO-based evaluation of the effects of thermodynamic instability and aerosol loading on Amazon Basin deep convection and lightning, J. Geophys. Res. Atmos., 129, e2023JD039818, doi:10.1029/2023JD039818.
Chen, T., J. Guo, Z. Li, C. Zhao, H. Liu, M. Cribb, F. Wang, and J. He, 2016: A CloudSat perspective on the cloud climatology and its association with aerosol perturbations in the vertical over eastern China, J. Atmos. Sci., 73, doi:10.1175/JAS-D-15-0309.
Fan, J., and Z. Li, 2022: Aerosol interactions with deep convective clouds, Chapter 14 (pp. 571-618) in Aerosols and Climate (ed. K. Carslaw), Elsevier Inc.
Fan, J., T. Yuan, J. M. Comstock, S. Ghan, A. Khain, L. R. Leung, Z. Li, V. J. Martins, and M. Ovchinnikov, 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds, J. Geophys. Res. Atmos., 114, D22206, doi:10.1029/2009JD012352.
Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li, 2012: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection, Geophys. Res. Lett., 39, L09806, doi:10.1029/2012GL051851.
Fan, J., L. R. Leung, D. Rosenfeld, Q. Chen, Z. Li, J. Zhang, and H. Yan, 2013: Microphysical effects determine macrophysical response for aerosol impact on deep convective clouds, P. Natl. Acad. Sci. USA, doi:10.1073/pnas.1316830110.
Fan, J., D. Rosenfeld, Y. Yang, C. Zhao, L. R. Leung, and Z. Li, 2015: Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China, Geophys. Res. Lett., 42, doi:10.1002/2015GL064479.
Fan, J., D. Rosenfeld, Y. Zhang, S. E. Giangrande, Z. Li, and Coauthors, 2018: Substantial convection and precipitation enhancements by ultrafine aerosol particles, Science, 359, 411-418, doi:10.1126/science.aan8461.
Fromm, M., O. Torres, D. Diner, D. Lindsey, B. Vant Hull, R. Servranckx, E. P. Shettle, and Z. Li, 2008: Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 1. Earth-viewing satellite perspective, J. Geophys. Res. Atmos., 113, D08202, doi:10.1029/2007JD009153.
Jiang, M., Z. Li, B. Wan, and M. Cribb, 2016: Impact of aerosols on precipitation from deep convective clouds in eastern China, J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024246.
Lee, S. S., J. Guo, and Z. Li, 2016: Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part 2: Model simulations, J. Geophys. Res. Atmos., 121, 11,739-11,760, doi:10.1002/2015JD024362.
Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding, 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation, Nature-Geoscience (article), doi: 10.1038/NGEO1313.
Manoj, M. G., S.-S. Lee, and Z. Li, 2021: Competing aerosol effects in triggering deep convection over the Indian Region, Clim. Dyn., doi:10.1007/s00382-020-05561-3.
Niu, F., and Z. Li, 2012: Systematic variations of cloud top temperature and precipitation rate with aerosols over the global tropics, Atmos. Chem. Phys., 12, 8491-8498.
Peng, J., Z. Li, H. Zhang, J. Liu, and M. Cribb, 2016: Systematic changes in cloud radiative forcing with aerosol loading for deep clouds in the tropics, J. Atmos. Sci., 73, 231-249, doi:10.1175/JAS-D-15-0080.1.
Shan, S., D. Allen, Z. Li, K. Pickering, and J. Lapierre, 2023: Machine-learning-based investigation of the variables affecting summertime lightning occurrence over the Southern Great Plains, Atmos. Chem. Phys., 23, 14,547-14,560, doi:10.5194/acp-23-14547-2023.
Sun, M., Z. Li , T. Wang, E. R. Mansell, X. Qie, S. Shan, D. Liu, and M. C. Cribb, 2024: Understanding the effects of aerosols on electrification and lightning polarity in an idealized supercell thunderstorm via model emulation, J. Geophys. Res. Atmos., 129, e2023JD039251, https://doi.org/10.1029/2023JD039251.
Tao, W.-K., J. P. Chen, Z. Li, C. Wang, and C. Zhang, 2012: Impact of aerosols on convective clouds and precipitation, Rev. of Geophys., doi:10.1029/2011RG000369.
Yan, H., Z. Li, J. Huang, M. Cribb, and J. Liu, 2014: Long-term aerosol-mediated changes in cloud radiative forcing of deep clouds at the top and bottom of the atmosphere over the Southern Great Plains, Atmos. Chem. Phys., 14, doi:110.5194/acp-14-7113-2014.
Yang, X., Z. Li, L. Liu, L. Zhou, M. Cribb, and F. Zhang, 2016: Distinct weekly cycles of thunderstorms and a potential connection with aerosol type in China, Geophys. Res. Lett., 43, doi:10.1002/2016GL070375. Supplement
Zhang, Y., J. Fan, Z. Li, and D. Rosenfeld, 2021: Impacts of cloud microphysics parameterizations on simulated aerosol-cloud interactions for deep convective clouds over Houston, Atmos. Chem. Phys., 21, 2363-2381, doi:10.5194/acp-21-2363-2021. Supplement
Zhao, C., Y. Lin, F. Wu, Y. Wang, Z. Li, D. Rosenfeld, and Y. Wang, 2018: Enlarging rainfall area of tropical cyclones by atmospheric aerosols, Geophys. Res. Lett., 45, 8604-8611, doi:10.1029/2018GL079427. Supplementary Tables Supplement
Joint impact of aerosols, heating by wild fires, and urbanization on severe storms and pyroCb (14)
Fan, J., Y. Zhang, Z. Li, J. Hu, and D. Rosenfeld, 2020: Urbanization-induced land and aerosol impacts on sea breeze circulation and convective precipitation, Atmos. Chem. Phys., 20, 14,163-14,182, doi:10.5194/acp-2020-411.
Guo, J., M. Deng, S. S. Lee, F. Wang, Z. Li, P. Zhai, H. Liu, W. Lv, W. Yao, and X. Li, 2016: Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part 1: Observational analyses, J. Geophys. Res. Atmos., 121, 6472-6488, doi:10.1002/2015JD023257.
Han, W., Z. Li, J. Guo, T. Su, T. Chen, J. Wei, and M. C. Cribb, 2020: The urban-rural heterogeneity of air pollution in 35 metropolitan regions across China, Remote Sens., 12, 2320, doi:10.3390/rs12142320. Supplement
Han, W., Z. Li, F. Wu, Y. Zhang, J. Guo, T. Su, M. C. Cribb, J. Fan, T. Chen, J. Wei, and S.-S. Lee, 2020: The mechanisms and seasonal differences of the impact of aerosols on the daytime surface urban heat island effect, Atmos. Chem. Phys., 20, 6479-6493, doi:10.5194/acp-20-6479-2020. Supplement
Kablick III, P., M. Fromm, S. Miller, P. Partain, D. Peterson, S. Lee, Y. Zhang, A. Lambert, and Z. Li, 2018: The Great Slave Lake pyroCb of 5 August 2014: observations, simulations, comparisons with regular convection, and impact on UTLS water vapor, J. Geophys. Res. Atmos., 123, doi:10.1029/2018JD028965.
Lee, S. S., B.-G. Kim, Z. Li, Y.-S. Choi, C.-H. Jung, J. Um, J. Mok, and K.-H. Seo, 2018: Aerosol as a potential factor to control the increasing torrential rain events in urban areas over the last decades, Atmos. Chem. Phys., 18, 12,531-12,550, doi:10.5194/acp-18-12531-2018.
Lee, S.-S., G. Kablick III, Z. Li, C. H. Jung, Y.-S. Choi, J. Um, and W. J. Choi, 2020: Examination of the effects of aerosols on a pyroCb and their dependence on fire intensity and aerosol perturbation, Atmos. Chem. Phys., 20, 3357-3371, doi:10.5194/acp-20-3357-2020.
Wang, Q., Z. Li, J. Guo, C. Zhao, and M. Cribb, 2018: The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements?, Atmos. Chem. Phys., 18, 12,797-12,816, doi:10.5194/acp-18-12797-2018.
Xian, T., J. Guo, R. Zhao, T. Su, and Z. Li, 2023: The impact of urbanization on mesoscale convective systems in the Yangtze River Delta region of China: insights gained from observations and modeling, J. Geophys. Res. Atmos., 128, doi:10.1029/2022JD037709.
Yang, X., and Z. Li, 2014: Increases in thunderstorm activity and relationships with air pollution in southeast China, J. Geophys. Res. Atmos., 119, 1835-1844, doi:10.1002/2013JD021224.
Yang, X., Z. Yao, Z. Li, and T. Fan, 2013: Heavy air pollution suppresses summer thunderstorms in central China, J. Atmos. Sol-Terr. Phy., 95-96, 28-40.
Zhang, L., W. Lau, W. Tao, and Z. Li, 2020: Large wildfires in the western US exacerbated by tropospheric drying linked to a multi-decadal trend in the expansion of the Hadley circulation, Geophys. Res. Lett., 47, e2020GL087911, doi:10.1029/2020GL087911. Supplement
Zhang, Y., J. Fan, T. Logan, Z. Li, and C. R. Homeyer, 2019: Wildfire impact on environmental thermodynamics and severe convective storms, Geophys. Res. Lett., 46, doi:10.1029/2019GL084534. Supplement
Zhao, P., Z. Li, H. Xiao, F. Wu, Y. Zheng, M. C. Cribb, X. Jin, and Y. Zhou, 2020: Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China, Atmos. Chem. Phys., 20, 13,379-13,397, doi:10.5194/acp-20-13379-2020. Supplement
Planetary Boundary Layer (19)
Atmospheric profiling and PBL height detection (9)
Guo, J., Y. Miao, Y. Zhang, H. Liu, Z. Li, W. Zhang, J. He, M. Lou, Y. Yan, L. Bian, and P. Zhai, 2016: The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data, Atmos. Chem. Phys., 16, doi:10.5194/acp-16-13309-2016.
Li, J., H. Chen, Z. Li, P. Wang, M. Cribb, and X. Fan, 2015: Low-level temperature inversions and their effect on aerosol condensation nuclei concentrations under different large-scale synoptic circulations, Adv. Atmos. Sci., 32(7), doi:10.1007/s00376-014-4150-z.
Li, J., H. Chen, Z. Li, P. Wang, X. Fan, W. He, and J. Zhang, 2019: Analysis of low-level temperature inversions and their effects on aerosols in the lower atmosphere, Adv. Atmos. Sci., 36, 1235-1250, doi:10.1007/s00376-019-9018-9.
Roldán-Henao, N., T. Su, and Z. Li, 2024: Refining planetary boundary layer height retrievals from micropulse lidar at multiple ARM sites around the world, J. Geophys. Res. Atmos., 129, e2023JD040207, doi:10.1029/2023JD040207. Supplement
Sawyer, V., and Z. Li, 2013: Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar, and infrared spectrometer, Atmos. Environ., 79, 518-528, doi:10.1016/j.atmosenv.2013.07.019.
Su, T., Z. Li, and R. Kahn, 2020: A new method to retrieve the diurnal variability of planetary boundary layer height from lidar under different thermodynamic stability conditions, Remote Sens. Environ., 237, doi:10.1016/j.rse.2019.111519.
Weng, D., X. Fang, and Z. Li, 1985: A preliminary study on the vertical decreasing of water vapour, J. Meteorol., 8, 152-160.
Yan, X., C. Liang, Y. Jiang, N. Luo, Z. Zang, and Z. Li, 2020: A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer, IEEE Trans. Geosci. Remote Sens., 58(12), doi:10.1109/TGRS.2020.2987896.
Zhang, J., Y. Zheng, Z. Li, X. Xia, and H. Chen, 2020: A 17-year climatology of temperature inversions above clouds over the ARM SGP site: the roles of cloud radiative effects, Atmos. Res., 237, doi:10.1016/j.atmosres.2019.104810.
PBL interactions with air pollutants and clouds (10)
Dong, Z., Z. Li, X. Yu, M. C. Cribb, X. Li, and J. Dai, 2017: Opposite long-term trends in aerosols between lower and higher altitudes: a testimony to the aerosol-PBL feedback, Atmos. Chem. Phys., 17, 7997-8009, doi:10.5194/acp-17-7997-2017.
Huang, X., Y.-Y. Wang, Y. Shang, X. Song, R. Zhang, Y.-X. Wang, Z. Li, and Y. Yang, 2023: Contrasting the effect of aerosol properties on the planetary boundary layer height in Beijing and Nanjing, Atmos. Environ., 308, doi:10.1016/j.atmosenv.2023.119861. Supplement
Li, Z., J. Guo, A. Ding, H. Liao, J. Liu, Y. Sun, T. Wang, H. Xue, H. Zhang, and B. Zhu, 2017: Aerosols and boundary-layer interactions and impact on air quality, Natl. Sci. Rev., 4, 810-833, doi:10.1093/nsr/nwx117.
Su, T., Z. Li, and R. Kahn, 2018: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15,921-15,935, doi:10.5194/acp-18-15921-2018. Supplement
Su, T., Z. Li, Y. Zheng, Q. Luan, and J. Guo, 2020: Abnormally shallow boundary layer associated with severe air pollution during the COVID-19 lockdown in China, Geophys. Res. Lett., 47, doi:10.1029/2020GL090041. Supplement
Su, T., Z. Li, C. Li, J. Li, W. Han, C. Shen, W. Tan, J. Wei, and J. Guo, 2020: The significant impact of aerosol vertical structure on lower atmosphere stability and its critical role in aerosol-planetary boundary layer (PBL) interactions, Atmos. Chem. Phys., 20, 3713-3724, doi:10.5194/acp-20-3713-2020.
Su, T., Y. Zheng, and Z. Li, 2022: Methodology to determine the coupling of continental
clouds with surface and boundary layer height under cloudy conditions from lidar and meteorological data, Atmos. Chem. Phys., 22, 1453-1466, doi:10.5194/acp-22-1453-2022.
Su, T., Z. Li, Y. Zheng, T. Wu, H. Wu, and J. Guo, 2022: Aerosol-boundary layer interaction modulated entrainment process, npj Clim. Atmos. Sci., 5:64, doi:10.1038/s41612-022-00283-1.
Su, T., Z. Li, Y. Zhang, Y. Zheng, and H. Zhang, 2024: Observation and reanalysis derived relationships between cloud and land surface fluxes across cumulus and stratiform coupling over the Southern Great Plains, Geophys. Res. Lett., 51, e2023GL108090, doi:10.1029/2023GL108090. Supplement
Wang, J., H. Su, C. Wei, G. Zheng, J. Wang, T. Su, C. Li, C. Liu, J. E. Pleim, Z. Li, A. Ding, M. O. Andreae, Ulrich Poschl, and Y. Cheng, 2023: Black-carbon-induced regime transition of boundary layer development strongly amplifies severe haze, One Earth, 6, 751-759, doi:10.1016/j.oneear.2023.05.010.
Aerosols and Air Quality (160)
New particle formation, aerosol size distribution, mixing and chemical composition (8)
Li, S., F. Zhang, X. Jin, Y. Sun, H. Wu, C. Xie, L. Chen, J. Liu, T. Wu, S. Jiang, M. C. Cribb, and Z. Li, 2020: Characterizing the ratio of nitrate to sulfate in ambient fine particles of urban Beijing during 2018-2019, Atmos. Environ., 237, 117662, doi:10.1016/j.atmosenv.2020.117662.
Li, Y., F. Zhang, Z. Li, S. Li, Z. Wang, P. Li, Y. Sun, J. Ren, Y. Wang, M. C. Cribb, and C. Yuan, 2017: Influences of aerosol physicochemical properties and new particle formation on CCN activity from observations at a suburban site in China, Atmos. Res., 188, doi:10.1016/j.res.2017.01.009.
Luo, N., W. Shi, C. Liang, Z. Li, H. Wang, W. Zhao, Y. Zhang, Y. Wang, Z. Li, and X. Yan, 2019: Characteristics of atmospheric fungi in particle growth events along with new particle formation in the central North China Plain, Sci. Total Environ., 683, 389-398, doi:10.1016/j.scitotenv.2019.05.299. Supplement
Wang, Y., Z. Li, Q. Wang, X. Jin, P. Yan, M. C. Cribb, Y. Li, C. Yuan, H. Wu, T. Wu, R. Ren, and Z. Cai, 2021: Enhancement of secondary aerosol formation by reduced anthropogenic emissions during Spring Festival 2019 and enlightenment for regional PM2.5 control in Beijing, Atmos. Chem. Phys., 21, 915-926, doi:10.5194/acp-21-915-2021. Supplement
Wang, Y., R. Hu, Q. Wang, Z. Li, M. C. Cribb, Y. Sun, X. Song, Y. Shang, Y. Wu, X. Huang, and Y.-X. Wang, 2022: Different effects of anthropogenic emissions and aging processes on the mixing state of soot particles in the nucleation and accumulation modes, Atmos. Chem. Phys., 22, 14,133-14,146, doi:10.5194/acp-22-14133-2022. Supplement
Wu, H., Z. Li, H. Li, K. Luo, Y. Wang, P. Yan, et al., 2020: The impact of the atmospheric turbulence-development tendency on new particle formation: a common finding on three continents, Natl. Sci. Rev., doi:10.1093/nsr/nwaa157.
Wu, H., Z. Li, M. Jiang, C. Liang, D. Zhang, T. Wu, Y. Wang, and M. C. Cribb, 2021: Contributions of traffic emissions and new particle formation to the ultrafine particle size distribution in the megacity of Beijing, Atmos. Environ., 262, 118652, doi:10.1016/j.atmosenv.2021.118652.
Zhang, D., Z. Li, H. Wu, T. Wu, R. Ren, Z. Cai, C. Liang, and L. Chen, 2022: Analysis of aerosol particle number size distribution and source attribution at three megacities in China, Atmos. Environ., 279, 119114, doi:10.1016/j.atmosenv.2022.119114.
Hygroscopicity and impact on haze formation (13)
Chen, J., Z. Li, M. Lv, Y. Wang, W. Wang, Y. Zhang, H. Wang, X. Yan, Y. Sun, and M. Cribb, 2019: Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China, Atmos. Chem. Phys., 19, 1327-1342, doi:10.5194/acp-19-1327-2019.
Du, W., L. Dada, J. Zhao, X. Chen, K. R. Daellenbach, C. Xie, W. Wang, Y. He, J. Cai, L. Yao, Y. Zhang, Q. Wang, W. Xu, Y. Wang, G. Tang, X. Cheng, T. V. Kokkonen, W. Zhou, C. Yan, B. Chu, Q. Zha, S. Hakala, M. Kurrpa, Leena Jarvi, Y. Liu, Z. Li, and Coauthors, 2021: A 3D study on the amplification of regional haze and particle growth by local emissions, npj Clim. Atmos. Sci., 4:4, doi:10.1038/s41612-020-00156-5.
Fan, X., J. Liu, F. Zhang, L. Chen, D. Collins, W. Xu, X. Jin, J. Ren, Y. Wang, H. Wu, S. Li, Y. Sun, and Z. Li, 2020: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions, Atmos. Chem. Phys., 20, 915-929, doi:10.5194/acp-20-915-2020. Supplement
Jin, X., Y. Wang, Z. Li, F. Zhang, W. Xu, Y. Sun, X. Fan, G. Chen, H. Wu, J. Ren, Q. Wang, and M. C. Cribb, 2020: Significant contribution of organics to aerosol liquid water content in winter in Beijing, China, Atmos. Chem. Phys., 20, 901-914, doi:10.5194/acp-20-901-2020. Supplement
Jin, X., Z. Li, T. Wu, Y. Wang, Y. Cheng, T. Su, J. Wei, R. Ren, H. Wu, S. Li, D. Zhang, and M. C. Cribb, 2022: The different sensitivities of aerosol optical properties to particle concentration, humidity, and hygroscopicity between the surface level and the upper boundary layer in Guangzhou, China, Sci. Total Environ., 803, doi:10.1016/j.atmosenv.2021.118723. Supplement
Jin, X., Z. Li, T. Wu, Y. Wang, T. Su, R. Ren, H. Wu, D. Zhang, S. Li, and M. C. Cribb, 2022: Differentiating the contributions of particle concentration, humidity, and hygroscopicity to aerosol light scattering at three sites, J. Geophys. Res. Atmos., 127, doi:10.1029/2022JD036891.
Lv, M., D. Liu, Z. Li, J. Mao, Y. Sun, Z. Wang, Y. Wang, and C. Xie, 2016: Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: cases studies from the Xinzhou field campaign, J. Quant. Spectrosc. Ra., doi:10.1016/j.jqsrt.2015.12.029.
Wang, Y., F. Zhang, Z. Li, H. Tan, H. Xu, J. Ren, J. Zhao, W. Du, and Y. Sun, 2017: Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing, Atmos. Chem. Phys., 17, doi:10.5194/acp-17-5239-2017.
Wang, Y., Z. Li, Y. Zhang, W. Du, F. Zhang, H. Tan, H. Xu, T. Fan, X. Jin, X. Fan, Z. Dong, Q. Wang, and Y. Sun, 2018: Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain, Atmos. Chem. Phys., 18, 11,739-11,752, doi:10.5194/acp-18-11739-2018. Supplement
Wang, Y., J. Wang, Z. Li, X. Jin, Y. Sun, M. C. Cribb, R. Ren, M. Lv, Q. Wang, Y. Gao, R. Hu, Y. Shang, and W. Gong, 2021: Contrasting aerosol growth potential in the northern and central-southern regions of the North China Plain: implications for combating regional pollution, Atmos. Environ., 267, doi:10.1016/j.atmosenv.2021.118723. Supplement
Wu, T., Z. Li, J. Chen, Y. Wang, H. Wu, X. Jin, C. Liang, S. Li, W. Wang, and M. C. Cribb, 2020: Hygroscopicity of different types of aerosol particles: case studies using multi-instrument data in megacity Beijing, China, Remote Sens., 12, 785, doi:10.3390/rs12050785.
Zhang, F., Y. Li, Z. Li, L. Sun, R. Li, C. Zhao, P. Wang, Y. Sun, X. Liu, J. Li, P. Li, G. Ren, and T. Fan, 2014: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC3Exp campaign: implications for cloud condensation nuclei parameterization, Atmos. Chem. Phys., 14, doi:10.5194/acp-14-13423-2014.
Zhang, Y., W. Du, Y. Wang, Q. Wang, H. Wang, H. Zheng, F. Zhang, H. Shi, Y. Bian, Y. Han, P. Fu, F. Canonaco, A. S. H. Prévôt, T. Zhu, P. Wang, Z. Li, and Y. Sun, 2018: Aerosol chemistry and particle growth events at an urban downwind site in the North China Plain, Atmos. Chem. Phys., 18, 14,637-14,651, doi:10.5194/acp-18-14637-2018.
Algorithm development (11)
Kokhanovsky A., F. M. Breon, A. Cacciari, E. Carboni, D. Diner, W. Di Nicolantonio, R. G. Grainger, W. M. F. Grey, R. Höller, K.-H. Lee, Z. Li, et al., 2007: Aerosol remote sensing over land: a comparison of satellite retrievals using different algorithms and instruments, Atmos. Res., 85, 372-394.
Lee, K.-H., Z. Li, and Y.-J. Kim, 2007: SWIR/VIS reflectance ratio over Korea for aerosol retrieval, K. J. Remote Sens., 23, 1-5.
Li, Z., X. Zhao, R. Kahn, M. Mishchenko, L. Remer, K.-H. Lee, M. Wang, I. Laszlo, T. Nakajima, and H. Maring, 2009: Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective, Ann. Geophys., 27, 2755-2770.
Su, T., I. Laszlo, Z. Li, J. Wei, and S. Kalluri, 2020: Refining aerosol optical depth retrievals over land by constructing the relationship of spectral surface reflectances through deep learning: application to Himawari-8, Remote Sens. Environ., 251, 112093, doi:10.1016/j.rse.2020.112093. Supplement
Wei, J., Z. Li, Y. Peng, L. Sun, and X. Yan, 2019: A regionally robust high-spatial-resolution retrieval algorithm for MODIS images over eastern China, IEEE Geosci. Remote S., 57, 4748-4757, doi:10.1109/TGRS.2019.2892813.
Wei, J., Z. Li, L. Sun, Y. Yang, C. Zhao, and Z. Cai, 2019: Enhanced aerosol estimations from Suomi-NPP VIIRS images over heterogeneous surfaces, IEEE Geosci. Remote S., doi:10.1109/TGRS.2019.2927432.
Wei, J., Z. Li, L. Sun, Y. Peng, and L. Wang, 2019: Improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products, Atmos. Environ., 202, 315-327, doi:10.1016/j.atmosenv.2019.01.016.
Wei, J., Z. Wang, Z. Li, Z.-Q. Li, S. Pang, X. Xi, M. C. Cribb, and L. Sun, 2024: Global aerosol retrieval over land from Landsat imagery integrating Transformer and Google Earth Engine, Remote Sens. Environ., 315, 114404, doi:10.1016/j.rse.2024.114404. Supplement
Wong, M., J. Nichol, K.-H. Lee, and Z. Li, 2009: High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling, Science in China, Series D: Earth Sciences, 1-9, doi:10.1007/s11430-009-0125-9.
Yan, X., Z. Li, N. Luo, W. Shi, W. Zhao, X. Yang, and J. Jin, 2018: A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8, Atmos. Res., 207, 14-27, doi:10.1016/j.atmosres.2018.02.021.
Zhao, F., Y. Tan, Z. Li, and C. Gai, 2012: The effect and correction of aerosol forward scattering on retrieval of aerosol optical depth from Sun photometer measurements, Geophys. Res. Lett., 39, doi:10.1029/2012GL052135.
Product evaluation and improvement (15)
Jeong, M.-J., and Z. Li, 2005: Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer, J. Geophys. Res. Atmos., 110, D10S08, doi:10.1029/2004JD004647.
Jeong, M.-J., Z. Li, D. A. Chu, and S.-C. Tsay, 2005: Quality and compatibility analyses of global aerosol products derived from the advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer, J. Geophys. Res. Atmos., 110, D10S09, doi:10.1029/2004JD004648.
Lee, K., Z. Li, Y. J. Kim, and A. Kokhanovsky, 2009: Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades, in Atmospheric and Biological Environmental Monitoring, Springer Pub.
Lee, K.-H., Z. Li, M. C. Cribb, J. Liu, L. Wang, Y. Zheng, X. Xia, H. Chen, and B. Li, 2010: Aerosol optical depth measurements in eastern China and a new calibration method, J. Geophys. Res. Atmos., 115, D00K11, doi:10.1029/2009JD012812.
Li, J., R. Kahn, J. Wei, B. Carlson, A. Lacis, Z. Li, X. Li, O. Dubovik, and T. Nakajima, 2020: Synergy of satellite- and ground-based aerosol optical depth measurements using an ensemble Kalman filter approach, J. Geophys. Res. Atmos., 125, e2019JD031884, doi:10.1029/2019JD031884. Supplement
Li, Z., F. Niu, K.-H. Lee, J. Xin, W.-M. Hao, B. Nordgren, Y. Wang, and P. Wang, 2007: Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China, J. Geophys. Res. Atmos., 112, D22S07, doi:10.1029/2007JD008479.
Liu, J., X. Xia, Z. Li, P. Wang, M. Min, W. Hao, Y. Wang, J. Xin, X. Li, Y. Zheng, and Z. Chen, 2010: Validation of multi-angle imaging spectroradiometer aerosol products in China, Tellus, 62B, 117-124.
Mi, W., Z. Li, X. Xia, B. Holben, R. Levy, F. Zhao, H. Chen, and M. Cribb, 2007: Evaluation of the Moderate Resolution Imaging Spectroradiometer aerosol products at two Aerosol Robotic Network stations in China, J. Geophys. Res. Atmos., 112, D22S08, doi:10.1029/2007JD008474.
Vucetic, S., B. Han, W. Mi, Z. Li, and Z. Obradovic, 2008: A data-mining approach for the validation of aerosol retrievals, IEEE Geosci. Remote Sens., 5, 113-117.
Wang, L., J. Xin, Y. Wang, Z. Li, G. Liu, and J. Li, 2007: Evaluation of the MODIS aerosol optical depth retrieval over different ecosystems in China during EAST-AIRE, Atmos. Environ., doi:10.1016/j.atmosenv.2007.05.001.
Wang, L., J. Xin, Y. Wang, Z. Li, P. Wang, G. Liu, and T. Wen, 2007: Validation of MODIS aerosol products by CSHNET over China, China Sci. Bull., 52, 1708-1718.
Wang, L. L., Y. S. Wang, J. Y. Xin, Z. Li, et al., 2010: Assessment and comparison of three years of Terra and Aqua MODIS Aerosol Optical Depth Retrieval (C005) in Chinese terrestrial regions, Atmos. Res., 97, 229-240.
Wei, J., Z. Li, Y. Peng, and L. Sun, 2019: MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison, Atmos. Environ., 201, 428-440, doi:10.1016/j.atmosenv.2018.12.004. Supplement
Wei, J., Z. Li, L. Sun, Y. Peng, Z. Zhang, Z. Li, T. Su, L. Feng, Z. Cai, and H. Wu, 2019: Evaluation and uncertainty estimate of next-generation geostationary meteorological Himawari-8/AHI aerosol products, Sci. Total Environ., 692, 879-891, doi:10.1016/j.scitotenv.2019.07.326.
Wei, J., Z. Li, L. Sun, Y. Peng, L. Liu, L. He, W. Qin, and M. C. Cribb, 2020: MODIS Collection 6.1 3-km-resolution aerosol optical depth product: global evaluation and uncertainty analysis, Atmos. Environ., 240, 117768, doi:10.1016/j.atmosenv.2020.117768. Supplement
Variation and influential factors (5)
Jeong, M.-J., and Z. Li, 2010:Separating real and apparent effects of cloud, humidity, and dynamics on aerosol optical thickness near cloud edges, J. Geophys. Res. Atmos., 115, doi:10.1029/2009JD013547.
Jeong, M.-J., Z. Li, E. Andrews, and S.-C. Tsay, 2007: Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site, J. Geophys. Res. Atmos., 112, D10202, doi:10.1029/2006JD007176.
Xia, X., P. Wang, Y. Wang, Z. Li, J. Xin, J. Liu, and H. Chen, 2008: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert, Geophys. Res. Lett., L16804, doi:10.1029/2008GL034981.
Xin, J., Y. Wang, Z. Li, P. Wang, W.-M. Hao, B. L. Nordgren, S. Wang, G. Liu, L. Wang, Y. Sun, and B. Hu, 2007: Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese Sun Hazemeter Network from August 2004 to September 2005, J. Geophys. Res. Atmos., 112, doi:10.1029/2006JD007075.
Xin, J., L. Wang, Y. Wang, Z. Li, and P. Wang, 2011: Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010, Atmos. Environ., 35, 6317-6325, doi:10.1016/j.atmosenv.2011.08.052.
Aerosol optical properties and radiative forcing/effects (18)
Chen, W., S. Bai, D. Wang, H. Zhao, H. Sun, L. Yi, H. Zhao, D. Xie, J. Peltoniemi, and Z. Li, 2019: Aerosol-induced changes in sky polarization pattern: potential hint on applications in polarimetric remote sensing, Int. J. Remote Sens., doi:10.1080/01431161.2019.1685724.
Eck, T. F., B. N. Holben, A. Sinyuk, R. T. Pinker, P. Goloub, H. Chen, B. Chatenet, Z. Li, R. P. Singh, S. N. Tripathi, J. S. Reid, D. M. Giles, O. Dubovik, N. T. O'Neill, and A. Smirnov, 2010: Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures, J. Geophys. Res. Atmos., 115, D19205, doi:10.1029/2010JD014002.
Fan, X., H. Chen, X. Xia, Z. Li, and M. Cribb, 2010: Aerosol optical properties from the Atmospheric Radiation Measurement Mobile Facility at Shouxian, China, J. Geophys. Res. Atmos., 115, D00K33, doi:10.1029/2010JD014650.
Junghenn Noyes, K. T., R. A. Kahn, J. A. Limbacher, and Z. Li, 2022: Canadian and Alaskan wildfire smoke particle properties, their evolution, and controlling factors, from satellite observations, Atmos. Chem. Phys., 22, 10,267-10,290, doi:10.5194/acp-22-10267-2022.
Li, Z., X. Xia, M. Cribb, W. Mi, B. Holben, P. Wang, H. Chen, S.-C. Tsay, T. F. Eck, F. Zhao, E. G. Dutton, and R. R. Dickerson, 2007: Aerosol optical properties and their radiative effects in northern China, J. Geophys. Res. Atmos., 112, D22S01, doi:10.1029/2006JD007382.
Li, Z., K.-H. Lee, J. Xin, Y. Wang, and W.-M. Hao, 2010: First observation-based estimates of cloud-free aerosol radiative forcing across China, J. Geophys. Res. Atmos., 115, D00K18, doi:10.1029/2009JD013306.
Liu, J., X. Xia, P. Wang, Z. Li, Y. Zheng, M. Cribb, and H. Chen, 2007: Significant aerosol direct radiative effects during a pollution episode in northern China, Geophys. Res. Lett., doi:10.1016/j.atmosenv.2007.05.001.
Liu, J., Y. Zheng, Z. Li, and R. Wu, 2008: Ground-based remote sensing of aerosol optical properties in one city in Northwest China, Atmos. Res., 89, doi:10.1016/j.atmosres.2008.01.010.
Mai, B., X. Deng, Z. Li, J. Liu, X. Xia, H. Che, X. Liu, F. Li, Y. Zou, and M. Cribb, 2018: Aerosol optical properties and radiative impacts in the Pearl Delta region of China during the dry season, Adv. Atmos. Sci., 35(2), 195-208, doi:10.1007/s00376-017-7092-4.
Ren, R., Z. Li, P. Yan, Y. Wang, H. Wu, M. C. Cribb, W. Wang, X. Jin, Y. Li, and D. Zhang, 2021: The effect of aerosol chemical composition on light scattering due to the hygroscopic swelling effect, Atmos. Chem. Phys., 21, 9977-9994, doi:10.5194/acp-21-9977-2021. Supplement
Wang, Y., J. Xin, Z. Li, S. Wang, P. Wang, W.-M. Hao, B. L. Nordgren, H. Chen, L. Wang, and Y. Sun, 2011: Seasonal variations in aerosol optical properties over China, J. Geophys. Res. Lett., 116, D18209, doi:10.1029/2010JD015376.
Wong, M., K.-H. Lee, J. Nichol, and Z. Li, 2010: Retrieval of aerosol optical thickness using MODIS 500 x 500 m2, a study in Hong Kong and Pearl Delta region, IEEE Trans. Geosci. Remote Sens., 48, 3318-3327.
Xia, X., H. Chen, Z. Li, P. Wang, and J. Wang, 2007: Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China, J. Geophys. Res. Atmos., 112, D22S02, doi:10.1029/2006JD007562.
Xia, X., Z. Li, P. Wang, H. Chen, and M. Cribb, 2007: Estimation of aerosol effects on surface irradiance based on measurements and radiative transfer model simulations in northern China, J. Geophys. Res. Atmos., 112, D22S10, doi:10.1029/2006JD008337.
Xia, X., Z. Li, B. Holben, P. Wang, T. Eck, H. Chen, M. Cribb, and Y. Zhao, 2007: Aerosol optical properties and radiative effects in the Yangtze Delta region of China, J. Geophys. Res. Atmos., 112, D22S12, doi:10.1029/2007JD008859.
Xia, X., Z. Li, P. Wang, M. Cribb, H. Chen, and Y. Zhao, 2008: Analysis of photosynthetic photon flux density and its parameterization in Northern China, Agr. Forest Meteor., 148, 1101-1108.
Xia, X., Z. Li, P. Wang, M. Cribb, H. Chen, and Y. Zhao, 2008: Analysis of relationships between ultraviolet radiation (295-385 nm) and aerosols as well as shortwave radiation in North China Plain, Ann. Geophys., 26, 2043-2008.
Zhang, H., Z. Shen, X. Wei, M. Zhang, and Z. Li, 2012: Comparison of optical properties of nitrate and sulfate aerosol and the direct radiative forcing due to nitrate in China, Atmos. Res., 113, 113-125.
Aerosol single-scattering albedo (5)
Chaudhry, Z., J. V. Martins, Z. Li, S.-C. Tsay, W. Nan, T. Wen, H. Chen, P. Wang, C. Li, and R. Dickerson, 2007: In situ measurements of aerosol mass concentration and radiative properties in Xianghe, southeast of Beijing, J. Geophys. Res. Atmos., 112, D23S90, doi:10.1029/2007JD009055.
Lee, K.-H., Z. Li, M.-S. Wong, J. Xin, W.-M. Hao, and F. Zhao, 2007: Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements, J. Geophys. Res. Atmos., 112, D22S15, doi:10.1029/2007JD009077.
Logan, T., B. Xi, X. Dong, Z. Li, and M. Cribb, 2013: Classification and investigation of Asian aerosol absorptive properties, Atmos. Chem. Phys., 13, 2253-2265.
Mok, J., N. A. Krotkov, O. Torres, H. Jethva, Z. Li, and Coauthors, 2018: Comparisons of spectral aerosol single scattering albedo in Seoul, South Korea, Atmos. Meas. Tech., 11, 2295-2311, doi:10.5194/amt-11-2295-2018.
Zhao, F., and Z. Li, 2007: Estimation of aerosol single scattering albedo from solar direct spectral radiance and total broadband irradiances measured in China, J. Geophys. Res. Atmos., 112, D22S03, doi:10.1029/2006JD007384.
Aerosol vertical distribution (13)
Cai, Z., Z. Li, P. Li, J. Li, H. Sun, Y. Yang, X. Gao, G. Ren, R. Ren, and J. Wei, 2022: Vertical distributions of aerosol microphysical and optical properties based on aircraft measurements made over the Loess Plateau in China, Atmos. Environ., 270, 118888, doi:10.1016/j.atmosenv.2021.118888.
Cai, Z., Z. Li, P. Li, J. Li, H. Sun, X. Gao, Y. Peng, Y. Wang, D. Zhang, and G. Ren, 2022: Vertical distributions of aerosol and cloud microphysical properties and the aerosol impact on a continental cumulus cloud based on aircraft measurements from the Loess Plateau of China, Front. Environ. Sci., 9, doi:10.3389/fenvs.2021.808861.
Du, W., W. Wang, R. Liu, Y. Wang, Y. Zhang, J. Zhao, L. Dada, C. Xie, Q. Wang, W. Xu, W. Zhou, F. Zhang, Z. Li, and Coauthors, 2022: Insights into vertical differences of particle number size distributions in winter in Beijing, China, Sci. Total Environ., 802, 149695, doi:10.1016/j.scitotenv.2021.149695.
Huang, Z., J. Huang, J. Bi, G. Wang, W. Wang, Q. Fu, Z. Li, S.-C. Tsay, and J. Shi, 2010: Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment, J. Geophys. Res. Atmos., 115, D00K15, doi:10.1029/2009JD013273.
Li, C., J. W. Stehr, L. T. Marufu, Z. Li, and R. R. Dickerson, 2012: Aircraft measurements of SO2 and aerosols over northeastern China: vertical profiles and the influence of weather on air quality, Atmos. Environ., 62, 492-501.
Li, J., X. Liu, L. Yuan, Y. Yin, Z. Li, P. Li, G. Ren, L. Jin, R. Li, Z. Dong, Y. Li, and J. Yang, 2015: Vertical distribution of aerosol optical properties based on aircraft measurements over the Loess Plateau in China, J. Environ. Sci., 34, doi:10.1016/j.jes.2015.01.021.
Li, J., Y. Yin, P. Li, Z. Li, R. Li, M. Cribb, Z. Dong, F. Zhang, J. Li, G. Ren, L. Jin, and Y. Li, 2015: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China, Atmos. Res., 155, 73-86.
Liu, J., Y. Zheng, Z. Li, C. Flynn, E. J. Welton, and M. Cribb, 2011: Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors, Atmos. Environ., 45, doi:10.1016/j.atmosenv.2011.04.031.
Liu, J., Y. Zheng, Z. Li, C. Flynn, and M. Cribb, 2012: Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China, J. Geophys. Res. Atmos., 117, D00K38, doi:10.1029/2011JD016490.
Wang, F., Z. Li, X. Ren, Q. Jiang, H. He, R. R. Dickerson, X. Dong, and F. Lv, 2018: Vertical distributions of aerosol optical properties during the spring 2016 ARIAs airborne campaign in the North China Plain, Atmos. Chem. Phys., 18, 8995-9010, doi:10.5194/acp-18-8995-2018.
Wang, F., Z. Li, Q. Jiang, X. Ren, H. He, Y. Tang, X. Dong, Y. Sun, and R. R. Dickerson, 2024: Comparative analysis of aerosol vertical characteristics over the North China Plain based on multi-source observation data, Remote Sens., 16, 609, doi:10.3390/rs16040609.
Wu, T., Z. Li, X. Jin, H. Wu, R. Ren, D. Zhang, L. Chen, Y. Su, and M. Cribb, 2022: LiDAR-based remote sensing of the vertical profile of aerosol liquid water content using a machine-learning model, IEEE Trans. Geosci. Remote Sens., 60, doi:10.1109/TGRS.2021.3130204.
Yorks, J. E., J. Wang, M. J. McGill, M. Follette-Cook, E. P. Nowottnick, J. S. Reid, P. R. Colarco, J. Zhang, O. Kalashnikova, H. Yu, F. Marenco, J. A. Santanello, T. M. Weckwerth, Z. Li, J. R. Campbell, P. Yang, M. Diao, V. Noel, K. G. Meyer, J. L. Carr, M. Garay, K. Christian, A. Bennedetti, A. M. Ring, A. Crawford, M. J. Pavolonis, V. Aquila, J. Kim, and S. Kondragunta, 2023: A SmallSat concept to resolve diurnal and vertical variations of aerosols, clouds, and boundary layer height, Bull. Am. Meteorol. Soc., 104(4), 815-836, doi:10.1175/BAMS-D-21-0179.2.
Air pollution and health (2)
Wei, J., J. Wang, Z. Li, S. Kondragunta, S. Anenberg, Y. Wang, H. Zhang, D. Diner, J. Hand, A. Lyapustin, R. Kahn, P. Colarco, A. da Silva, and C. Ichoku, 2023: Long-term mortality burden trends attributed to black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study, Lancet Planet. Health, 7, e963-e975, doi:10.1016/S2542-5196(23)00235-8. Supplement
Wei, J., Z. Li, A. Lyapustin, J. Wang, O. Dubovik, J. Schwartz, L. Sun, C. Li, S. Liu, and T. Zhu, 2023: First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact, Nature Communications, 14, 8349, doi:10.1038/s41467-023-43862-3. Supplement
Gaseous pollutants, O3, SO2, NO2, CO, CO2, NOx, VOCs (14)
Benish, S. E., H. He, X. Ren, S. J. Roberts, R. J. Salawitch, Z. Li, F. Wang, Y. Wang, F. Zhang, M. Shao, S. Lu, and R. R. Dickerson, 2020: Measurement report: aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China, Atmos. Chem. Phys., 20, 14,523-14,545, doi:10.5194/acp-20-14523-2020. Supplement
Cheng, F., Z. Li, Z. Yang, R. Li, D. Wang, A. Jia, K. Li, B. Zhao, S. Wang, D. Yin, S. Li, W. Xue, M. C. Cribb, and J. Wei, 2024: First retrieval of 24-hourly 1-km-resolution gapless surface ozone (O3) from space in China using artificial intelligence: diurnal variations and implications for air quality and phytotoxicity, Remote Sens. Environ., 316, 114482, doi:10.1016/j.rse.2024.114482. Supplement
Guo, Z., Z. Li, J. Farquhar, A. J. Kaufman, N. Wu, C. Li, R. R. Dickerson, and P. Wang, 2010: Identification of sources and formation processes of atmospheric sulfate by sulfur isotope and scanning electron microscope measurements, J. Geophys. Res. Atmos., 115, D00K07, doi:10.1029/2009JD012893.
Halliday, H. S., J. P. DiGangi, Y. Choi, G. S. Diskin, S. E. Pusede, M. Rana, J. B. Nowak, C. Knote, X. Ren, H. He, R. R. Dickerson, and Z. Li, 2019: Using short-term CO/CO2 ratios to assess air mass differences over the Korean peninsula during KORUS-AQ, J. Gephys. Res. Atmos., 124, 10,951-10,972, doi:10.1029/2018JD029697. Supplement
He, H., C. Loughner, Z. Li, N. Krotkov, K. Yang, L. Wang, X. Bao, G. Zhao, and R. Dickerson, 2012: SO2 over central China: Measurements, numerical simulations and the tropospheric sulfur budget, J. Geophys. Res. Atmos., 117, D00K37, doi:10.1029/2011JD016473.
He, H., K. Y. Vinnikov, C. Li, N. A. Krotkov, A. R. Jongeward, Z. Li, J. W. Stehr, J. C. Hains, and R. R. Dickerson, 2016: Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland, Earth's Future, 494-109, doi:10.1002/2015EF000330.
Krotkov, N.A., B. McClure, R.R. Dickerson, K. Yang, C. Li, S. Carn, A. Krueger, P. K. Bhartia, P. F. Levelt, Z. Li, H. Chen, P. Wang, and D. Lu, 2008: Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China, J. Geophys. Res. Atmos., 113, doi:10.1029/2007JD008818.
Li, C., L. T. Marufu, R. R. Dickerson, Z. Li, T. Wen, Y. Wang, P. Wang, H. Chen, and J. W. Stehr, 2007: In situ measurements of trace gases and aerosol optical properties at a rural site in northern China during East Asian Study of Tropospheric Aerosols: An International Regional Experiment 2005, J. Geophys. Res. Atmos., D22S04, doi:10.1029/2006JD007592.
Li, C., C. McLinden, V. Fioletov, N. Krotkov, S. Carn, J. Joiner, D. Streets, H. He, X. Ren, Z. Li, and R. R. Dickerson, 2017: India is overtaking China as the world's largest emitter of anthropogenic sulfur dioxide, Sci. Rep., 7, doi:10.1038/s41598-017-14639-8.
Wang, Y., S. Dörner, S. Donner, S. Böhnke, I. De Smedt, R. R. Dickerson, Z. Dong, H. He, Z. Li, Z. Q. Li, D. Li, D. Liu, X. Ren, N. Theys, Y. Y. Wang, Y. Wang, Z. Wang, H. Xu, J. Xu, and T. Wagner, 2019: Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport, Atmos. Chem. Phys., 19, 5417-5449, doi:10.5194/acp-19-5417-2019. Supplement
Wei, J., Z. Li, J. Wang, C. Li, P. Gupta, and M. C. Cribb, 2023: Ground-level gaseous pollutants (NO2, SO2, and CO) in China: daily seamless mapping and spatiotemporal variations, Atmos. Chem. Phys., 23, 1511-1532, doi:10.5194/acp-23-1511-2023. Supplement
Wei, J., Z. Li, K. Li, R.R. Dickerson, R.T. Pinker, J. Wang, X. Liu, L. Sun, W. Xue, and M. Cribb, 2022: Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China, Remote Sens. Environ., 270, 112775, doi:10.1016/j.rse.2021.112775.
Wei, J., S. Liu, Z. Li, C. Liu, K. Qin, X. Liu, R. T. Pinker, R. R. Dickerson, J. Lin, K. F. Boersma, L. Sun, R. Li, W. Xue, Y. Cui, C. Zhang, and J. Wang, 2022: Ground-level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence, Environ. Sci. Tech., 56, 9988-9998.
Yang, Z., Z. Li, F. Cheng, Q. Lv, K. Li, T. Zhang, Y. Zhou, B. Zhao, W. Xue, and J. Wei, 2024: Two-decade surface ozone (O3) pollution in China: enhanced fine-scale estimations and environmental health implications, Remote Sens. Environ., 317, 114459, doi:10.1016/j.rse.2024.114459. Supplement
PM1, PM2.5, PM10 (17)
Fan, J., R. Zhang, G. Li, J. Nielsen-Gammon, and Z. Li, 2005: Simulations of fine particulate matter (PM2.5) in Houston, Texas, J. Geophys. Res. Atmos., 110, D16203, doi:10.1029/2005JD005805.
Gündoğdu, S., G. T. Tuygun, Z. Li, J. Wei, and T. Elbir, 2022: Estimating daily PM2.5 concentrations using an extreme gradient boosting model based on VIIRS aerosol products over southeastern Europe, Air Qual. Atmos. Hlth., doi:10.1007/s11869-022-01245-5. Supplement
Liu, J., F. Weng, and Z. Li, 2019: Satellite-based PM2.5 estimation directly from reflectance at the top of the atmosphere using a machine learning algorithm, Atmos. Environ., 208, 113-122, doi:10.1016/j.atmosenv.2019.04.002. Supplement
Liu, J., F. Weng, Z. Li, and M. C. Cribb, 2019: Hourly PM2.5 estimates from a geostationary satellite based on an ensemble learning algorithm and their spatiotemporal patterns over central East Asia, Remote Sens., 11, doi:10.3390/rs11182120. Supplement
Liu, J., F. Weng, and Z. Li, 2022: Ultrahigh-resolution (250 m) regional surface PM2.5 concentrations derived first from MODIS measurements, IEEE Trans. Geosci. Remote Sens., 60, doi:10.1109/TGRS.2021.3064191.
Lv, M., Z. Li, Q. Jiang, T. Chen, Y. Wang, A. Hu, M. C. Cribb, and A. Cai, 2021: Contrasting trends of surface PM2.5, O3, and NO2 and their relationships with meteorological parameters in typical coastal and inland cities in the Yangtze River Delta, Int. J. Environ. Res. Public Health, 18, 12471, doi:10.3390/ijerph182312471.
Tian, Z., J. Wei, and Z. Li, 2023: How important is satellite-retrieved aerosol optical depth in deriving surface PM2.5 using machine learning? Remote Sens., 15(15), 3780, doi:10.3390/rs15153780.
Wei, J., Z. Li, J. Guo, L. Sun, W. Huang, W. Xue, T. Fan, and M. C. Cribb, 2019: Satellite-derived 1-km resolution PM1 concentrations from 2014 to 2018 across China, Environ. Sci. Tech., 53, 13,265-13,274, doi:10.1021/acs.est.9b03258. Supplement
Wei, J., W. Huang, Z. Li, W. Xue, Y. Peng, L. Sun, and M. C. Cribb, 2019: Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random forest approach, Remote Sens. Environ., 231, doi:10.1016/j.rse.2019.111221. Supplement
Wei, J., Z. Li, M. C. Cribb, W. Huang, W. Xue, L. Sun, J. Guo, Y. Peng, J. Li, A. Lyapustin, L. Liu, H. Wu, and Y. Song, 2020: Improved 1-km-resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees, Atmos. Chem. Phys., 20, 3273-3289, doi:10.5194/acp-20-3273-2020.
Wei, J., Z. Li, W. Xue, L. Sun, T. Fan, L. Liu, T. Su, and M. C. Cribb, 2021: The ChinaHighPM10 dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China, Environ. Int., 146, 106290, doi:10.1016/j.envint.2020.106290.
Wei, J., Z. Li, A. Lyapustin, L. Sun, Y. Peng, W. Xue, T. Su, and M. C. Cribb, 2021: Reconstructing 1 km resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications, Remote Sens. Environ., 252, 112136, doi:10.1016/j.rse.2020.112136.
Wei, J., Z. Li, R. T. Pinker, J. Wang, L. Sun, W. Xue, R. Li, and M. C. Cribb, 2021: Himawari-8-derived diurnal variations in ground-level PM2.5 pollution across China using the fast space-time Light Gradient Boosting Machine (LightGBM), Atmos. Chem. Phys., 21, 7863-7880, doi:10.5194/acp-21-7863-2021.
Wei, J., Z. Li, L. Sun, W. Xue, Z. Ma, L. Liu, T. Fan, and M. C. Cribb, 2022: Extending the EOS long-term PM2.5 data records since 2013 in China: application to the VIRS Deep Blue aerosol products, IEEE Trans. Geosci. Remote Sens., 60, doi:10.1109/TGRS.2021.3050999.
Wei, J., Z. Li, X. Chen, C. Li, Y. Sun, J. Wang, A. Lyapustin, G. P. Brasseur, M. Jiang, L. Sun, T. Wang, C. H. Jung, B. Qiu, C. Fang, X. Liu, J. Hao, Y. Wang, M. Zhan, X. Song, and Y. Liu, 2023: Separating daily 1-km PM2.5 inorganic chemical composition in China since 2000 via deep learning integrating ground, satellite, and model data, Environ. Sci. Tech., doi:10.1021/acs.est.3c00272. Supplement
Yan, X., Z. Zang, N. Luo, Y. Jiang, and Z. Li, 2020: A new interpretable deep learning method to monitor real-time PM2.5 concentrations from satellite data, Environ. Int., 144, doi:10.1016/j.envint.2020.106060. Supplement
Yan, X., C. Zuo, Z. Li, H. W. Chen, Y. Jiang, B. He, H. Liu, J. Chen, and W. Shi, 2023: Cooperative simultaneous inversion of satellite-based real-time PM2.5 and
ozone levels using an improved deep learning model with attention mechanism, Environ. Poll., 327, 121509, doi:10.1016/j.envpol.2023.121509. Supplement
Fine-mode aerosols (8)
Chen, L., F. Zhang, D. Collins, J. Ren, J. Liu, S. Jiang, and Z. Li, 2022: Characterizing the volatility and mixing state of ambient fine particles in the summer and winter of urban Beijing, Atmos. Chem. Phys., 22, 2293-2307, doi:10.5194/acp-22-2293-2022. Supplement
Liang, C., Z. Zang, Z. Li, and X. Yan, 2020: An improved global land anthropogenic aerosol product based on satellite retrievals from 2008 to 2016, IEEE Geosci. Remote Sens. Lett., doi:10.1109/LGRS.2020.2991730.
Ren, J., F. Zhang, L. Chen, G. Cao, M. Liu, X. Li, H. Wu, Y. Chen, and Z. Li, 2023: Identifying the hygroscopic properties of fine aerosol particles from diverse sources in urban atmosphere and the applicability in prediction of cloud nuclei, Atmos. Environ., 298, 119615, doi:10.1016/j.atmosenv.2023.119615.
Yan, X., Z. Li, W. Shi, N. Luo, T. Wu, and W. Zhao, 2017: An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness. Part 1: Algorithm development, Remote Sens. Environ., 192, 87-97, doi:10.1016/j.rse.2017.02.005.
Yan, X., Z. Li, W. Shi, N. Luo, W. Shi, W. Zhao, X. Yang, C. Liang, F. Zhang, and M. C. Cribb, 2019: An improved algorithm for retrieving the fine-mode fraction of aerosol optical thickness. Part 2: Application and validation in Asia, Remote Sens. Environ., 222, 90-103, doi:10.1016/j.rse.2018.12.012. Supplement
Yan, X., W. Shi, Z. Li, Z. Q. Li, N. Luo, W. Zhao, H. Wang, and X. Yu, 2017: Satellite-based PM2.5 estimation using fine-mode aerosol optical depth thickness over China, Atmos. Environ., 170, 290-302, doi:10.1016/j.atmosenv.2017.09.023.
Yan, X., Z. Zang, C. Liang, N. Luo, R. Ren, M. C. Cribb, and Z. Li, 2021: New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals, Environ. Pollut., 276, 116707, doi:10.1016/j.envpol.2021.116707.
Yan, X., Z. Zang, Z. Li, N. Luo, C. Zuo, Y. Jiang, D. Li, Y. Guo. W. Zhao, W. Shi, and M. C. Cribb, 2022: A global land aerosol fine-mode fraction dataset (2001-2020) retrieved from MODIS using hybrid physical and deep learning approaches, Earth Syst. Sci. Data, 14, 1193-1213, doi:10.5194/essd-14-1193-2022. Supplement
Natural aerosols: smoke (12) and dust (9)
Dust:
Dickerson, R. R., C. Li, Z. Li, J. W. Stehr, H. Chen, P. Wang, X. Xia, X. Ban, F. Gong, J. Yuan, and J. Yang, 2007: Aircraft observations of dust and pollutants over northeast China: insight into the meteorological mechanisms of transport, J. Geophys. Res. Atmos., 112, D24S90, doi:10.1029/2007JD008999.
Du, W., J. Xin, M. Wang, Q. Gao, Z. Li, and Y. Wang, 2008: Photometric measurements of spring aerosol optical properties in dust and non-dust periods in China, Atmos. Environ., 42, doi:10.1016/j.atmosenv.2008.06.043.
Hansell, R., S.-C.Tsay, C. Hsu, Q. Ji, S. Bell, B. Holben, E. Welton, T. Roush, W. Zhang, J. Huang, Z. Li, and H. Chen, 2012: An assessment of the surface longwave direct radiative effect of airborne dust in Zhangye, China, during the Asian Monsoon Years field experiment (2008), J. Geophys. Res. Atmos., 117, doi:10.1029/2011JD017370.
Li, C., S.-C. Tsay, J. S. Fu, R. R. Dickerson, Q. Ji, S. W. Bell, Y. Gao, W. Zhang, J. Huang, Z. Li, and H. Chen, 2010: Anthropogenic air pollution observed near dust source regions in northwestern China during springtime 2008, J. Geophys. Res. Atmos., doi:10.1029/2009JD013659.
Liu, L., J. Guo, H. Gong, Z. Li, W. Chen, R. Wu, L. Wang, H. Xu, J. Li, D. Chen, and P. Zhai, 2019: Contrasting influence of Gobi and Taklimakan deserts on the dust aerosols in western North America, Geophys. Res. Lett., 46, 9064-9071, doi:10.1029/2019GL083508. Supplement
Logan, T., B. Xi, X. Dong, R. Obrecht, Z. Li, and M. Cribb, 2010: A study of Asian dust plumes using satellite, surface, and aircraft measurements during the INTEX-B field experiment, J. Geophys. Res. Atmos., 115, D00K25, doi:10.1029/2010JD014134.
Song, X., Y.-Y. Wang, X. Huang, Y.-X. Wang, Z. Li, B. Zhu, R. Ren, J. An, J. Yan, R. Zhang, Y. Shang, and P. Zhan, 2023: The impacts of dust storms with different transport pathways on aerosol chemical compositions and optical hygroscopicity of fine particles in the Yangtze River Delta, J. Geophys. Res. Atmos., 128, e2023JD039679, doi:10.1029/2023JD039679. Supplement
Xin, J., W. Du, Y. Wang, Q. Gao, Z. Li, and M. Wang, 2010: Aerosol optical properties affected by a strong dust storm over central and northern China, Adv. Atmos. Sci., 43, 27, 562-574.
Zheng, Y., J. Liu, Z. Li, B. Wang, and T. Tamio, 2008: Seasonal statistical characteristics of aerosol optical properties at a site near a dust region in China, J. Geophys. Res. Atmos., 113, doi:10.1029/2007JD009384.
Smoke:
Chen, L., F. Zhang, F. Yan, X. Wang, L. Sun, Y. Li, X. Zhang, Y. Sun, and Z. Li, 2020: The large proportion of black carbon (BC)-containing aerosols in the urban atmosphere, Environ. Pollut., 263, doi:10.1016/j.envpol.2020.114507. Supplement
Fromm, M., J. Alfred, K. Hoppel, J. Hornstein, R. Bevilacqua, E. Shettle, R. Servranckx, Z. Li, and B. Stocks, 2000: Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II and lidar in 1998, Geophys. Res. Let., 27, 1407-1410.
Junghenn Noyes, K., R. Kahn, A. Sedlacek, L. Kleinman, J. Limbacher, and Z. Li, 2020: Wildfire smoke particle properties and evolution, from space-based multi-angle imaging, Remote Sens., 12, 769, doi:10.3390/rs12050769. Supplement
Junghenn Noyes, K., R. Kahn, J. Limbacher, Z. Li, M. A. Fenn, D. M. Giles, J. W. Hair, J. M. Katich, R. H. Moore, C. E. Robinson, K. J. Sanchez, T. J. Shingler, K. L. Thornhill, E. B. Wiggins, and E. L. Winstead, 2020: Wildfire smoke particle properties and evolution, from space-based multi-angle imaging. II. The Williams Flat Fire during the FIREX-AQ campaign, Remote Sens., 12, 3823, doi:10.3390/rs12223823. Supplement
Li, Z., A. Khananian, R. Fraser, and J. Cihlar, 2001: Automatic detection of fire smoke using artificial neural networks and threshold approaches applied to AVHRR imagery, IEEE Tran. Geosci. Remote Sens., 39, 1859-1870.
Mok, J., N. Krotkov, A. Arola, O. Torres, H. Jethva, M. Andrade, G. Labow, T. Eck, Z. Li, R. Dickerson, G. Stenchikov, S. Osipov, and X. Ren, 2016: Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin, Sci. Rep., 6, doi:10.1038/srep36940.
Noh, Y. M., D. Müller, D. H. Shin, H. Lee, J. S. Jung, K.-H. Lee, M. Cribb, Z. Li, and J. Kim, 2009: Optical and microphysical properties of severe haze and smoke aerosol measured by integrated remote sensing techniques in Gwangju, Korea, Atmos. Environ., 43, doi:10.1016/j.atmosenv.2008.10.058.
O'Neill, N. T., T. F. Eck, B. N. Holben, A. Smirnov, A. Royer, and Z. Li, 2002: Optical properties of boreal forest fire smoke derived from Sun photometry, J. Geophys. Res. Atmos., 107, doi:10.1029/2001JD000877.
Sun, Y., Q. Jiang, Y. Xu, Y. Ma, Y. Zhang, X. Liu, W. Li, F. Wang, J. Li, P. Wang, and Z. Li, 2016: Aerosol characterization over the North China Plain: haze life cycle and biomass burning impacts in summer, J. Geophys. Res. Atmos., 121, 2508-2521, doi: 10.1002/2015JD024261. Supplement
Taubman, B. A., L. Marufu, B. Vant-Hull, C. Piety, B. Doddridge, R. Dickerson, and Z. Li, 2004: Smoke over haze: Aircraft observations of chemical and optical properties and the effects on heating rates and stability, J. Geophys. Res. Atmos., 109, D02206, doi:10.1029/2003JD003898.
Vant-Hull, B., Z. Li, B. F. Taubman, R. Levy, L. Marufu, F.-L. Chang, B. G. Doddridge, and R. R. Dickerson, 2005: Smoke over haze: Comparative analysis of satellite, surface radiometer, and airborne in situ measurements of aerosol optical properties and radiative forcing over the eastern United States, J. Geophys. Res. Atmos., 110, D10S21, doi:10.1029/2004JD004518.
Wong, J., and Z. Li, 2002: Retrieval of optical depth for heavy smoke aerosol plumes: uncertainties and sensitivities to the optical properties, J. Atmos. Sci., 59, 250-261.
Anthropogenic aerosols (10)
Du, W., J. Zhao, Y. Wang, Y. Zhang, Q. Wang, W. Xu, C. Chen, T. Han, F. Zhang, Z. Li, P. Fu, J. Li, Z. Wang, and Y. Sun, 2017: Simultaneous measurements of particle number size distributions at ground level and 260 m on a meteorological tower in urban Beijing, China, Atmos. Chem. Phys., 17, 6797-6811, doi:10.5194/acp-17-6797-2017.
Fan, T., X. Liu, P.-L. Ma, Q. Zhang, Z. Li, Y. Jiang, F. Zhang, C. Zhao, X. Yang, F. Wu, and Y. Wang, 2018: Emission or atmospheric processes? An attempt to attribute the source of large bias of aerosols in eastern China simulated by global climate models, Atmos. Chem. Phys., 18, 1395-1417, doi:10.5194/acp-18-1395-2018.
Jongeward, A. R., Z. Li, H. He, and X. Xiong, 2016: Natural and anthropogenic aerosol trends from satellite and surface observations and model simulations over the North Atlantic Ocean from 2002 to 2012, J. Atmos. Sci., 73, doi:10.1175/JAS-D-15-0308.1.
Lee, M. S., K.-H. Lee, Y. J. Kim, J. E. Nichol, Z. Li, and N. Emerson, 2007: Modeling of suspended solids and sea surface salinity in Hong Kong using Aqua/MODIS satellite images, K. J. Remote Sens., 23, 1-9.
Li, C., N. A. Krotkov, R. R. Dickerson, Z. Li, K. Yang, and M. Chin, 2010: Transport and evolution of a pollution plume from northern China: a satellite-based case study, J. Geophys. Res. Atmos., 115, D00K03, doi:10.1029/2009JD012245.
Li, C., T. Wen, Z. Li, R. R. Dickerson, Y. Yang, Y. Zhao, Y. Wang, and S.-C. Tsay, 2010: Concentrations and origins of atmospheric lead and other trace species at a rural site in northern China, J. Geophys. Res. Atmos., 115, D00K23, doi:10.1029/2009JD013639.
Wang, Q., J. Zhao, W. Du, G. Ana, Z. Wang, L. Sun, Y. Wang, F. Zhang, Z. Li, X. Ye, and Y. Sun, 2016: Characterization of submicron aerosols at a suburban site in central China, Atmos. Environ., 131, 115-123, doi:10.1016/j.atmosenv.2016.01.054.
Wang, Y., Z. Li, R. Zhang, X. Jin, W. Xu, X. Fan, H. Wu, F. Zhang, Y. Sun, Q. Wang, M. C. Cribb, and D. Hu, 2019: Distinct ultrafine- and accumulation-mode particle properties in clean and polluted urban environments, Geophys. Res. Lett., 46, 10,918-10,925, doi:10.1029/2019GL084047. Supplement
Xian, T., Z. Li, and J. Wei, 2021: Changes in air pollution following the COVID-19 epidemic in northern China: the role of meteorology, Front. Environ. Sci., 9, doi:10.3389/fenvs.2021.654651.
Zhao, J., W. Du, Y. Zhang, Q. Wang, C. Chen, W. Xu, T. Han, Y. Wang, P. Fu, Z. Wang, Z. Li, and Y. Sun, 2017: Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260 m in Beijing, Atmos. Chem. Phys., 17, 3215-3232, doi:10.5194/acp-17-3215-2017.
Climate (18)
Climate changes and interactions with the environment in East Asia (18)
Dong, D., W. Tao, W. K. M. Lau, Z. Li, G. Huang, and P. Wang, 2019: Interdecadal variation of precipitation over the Hengduan Mountains during rainy seasons, J. Climate, 32, 3743-3760, doi:10.1175/JCLI-D-18-0670.1. Supplement
Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan, 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions, J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021796.
Huang, J., Y. Li, C. Fu, F. Chen, Q. Fu, A. Dai, M. Shinoda, Z. Ma, Z. Li, L. Zhang, Y. Liu, H. Yu, Y. He, Y. Xie, X. Guan, M. Ji, L. Lin, S. Wang, H. Yan, and G. Wang, 2017: Dryland climate change: recent progress and challenges, Rev. Geophys., 55, 719-778, doi:10.1002/2016RG000550.
Lau, W. K. M., V. Ramanathan, G.-X. Wu, Z. Li, et al., 2008: The Joint Aerosol-Monsoon Experiment: a new challenge for monsoon climate research, Bull. Amer. Meteorol. Soc., 89, doi:10.1175/BAMS-89-3-369.
Lau, W. K. M., C. Yuan, and Z. Li, 2018: Origin, maintenance and variability of the Asian Tropopause Aerosol Layer (ATAL): the roles of monsoon dynamics, Sci. Rep., 8, 3960-3973, doi:10.1038/s41598-018-22267-z.
Li, Z., 2004: Aerosol and climate: A perspective over East Asia, In "Observation, Theory, and Modeling of the Atmospheric Variability" (ed. Zhu), World Scientific Pub. Co., 501-525.
Li, Z., and T. Yuan, 2006: Exploring aerosol-cloud-climate interaction mechanisms using the new generation of earth observation system data, Current problems in atmospheric radiation, (Eds. H. Fischer and B.-J. Song). Deepak Pub, 1-4.
Li, Z., et al., 2007: Preface to special section on East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE), J. Geophys. Res. Atmos., D22S00, doi:10.1029/2007JD008853.
Li, Z., et al., 2011: East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview, J. Geophys. Res. Atmos., 116, D00K34, doi:10.1029/2010JD015257.
Li, Z., W. K.-M. Lau, V. Ramanathan, et al., 2016: Aerosol and monsoon climate interactions over Asia, Rev. Geophys., 54, doi:10.1002/2015RG000500.
Liu, L., Z. Li, X. Yang, H. Gong, C. Li, and A. Xiong, 2016: The long-term trend in the diurnal temperature range over Asia and its natural and anthropogenic causes, J. Geophys. Res. Atmos., 121, 3519-3533, doi:10.002/2015JD024549.
Miao, Y., J. Guo, S. Liu, H. Liu, Z. Li, W. Zhang, and P. Zhai, 2017: Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17, 3097-3110, doi:10.5194/acp-17-3097-2017.
Niu, F., Z. Li, C. Li, K.-H. Lee, and M. Wang, 2010: Increase of wintertime fog in China: potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading, J. Geophys. Res. Atmos.,115, D00K20, doi:10.1029/2009JD013484.
Shen, L., C. Zhao, Z. Ma, Z. Li, J. Li, and K. Wang, 2019: Observed decrease of summer sea-land breeze in Shanghai from 1994 to 2014 and its association with urbanization, Atmos. Res., 227, 198-209, doi:10.1016/j.atmosres.2019.05.007.
Wang, J., D. J. Allen, K. E. Pickering, Z. Li, and H. He, 2016: Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign, J. Geophys. Res. Atmos., 121, 6534-6554, doi:10.1002/2016JD025108.
Wu, G., Z. Li, C. Fu, X. Zhang, R.-Y. Zhang, R.-H. Zhang, T. Zhou, J.-P. Li, J.-D. Li, D. Zhou, L. Wu, L. Zhou, B. He, and R. Huang, 2016: Advances in studying interactions between aerosols and monsoon in China, Sci. China, 59, doi:10.1007/s11430-015-5198-z.
Yang, X., C. Zhao, L. Zhou, Z. Li, M. Cribb, and S. Yang, 2018: Wintertime cooling and a potential connection with transported aerosols in Hong Kong during recent decades, Atmos. Res., 211, 52-61, doi:10.1016/j.atmosres.2018.04.029.
Yuan, C., W. K. M. Lau, Z. Li, and M. Cribb, 2019: Relationship between Asian monsoon strength and transport of surface aerosols to the Asian Tropopause Aerosol Layer (ATAL): interannual variability and decadal changes, Atmos. Chem. Phys., 19, 1901-1913, doi:10.5194/acp-19-1901-2019. Supplement
Land (29)
Fire hot spot detection (10)
Csiszar, I., A. Abuelgasim, Z. Li, J. Jin, R. Fraser, and W.-M. Hao, 2003: Interannual changes of active fire detectability in North America from long-term records of the advanced very high resolution radiometer, J. Geophys. Res. Atmos., 108(D2), 4075, doi:10.1029/2001JD001373.
Grégoire J.-M., D. R. Cahoon, D. Stroppiana, Z. Li, S. Pinnock, H. Eva, O. Arino, J.M. Rosaz, and I. Csiszar, 2001: Forest fire monitoring and mapping for GOFC: current products and information networks based on NOAA-AVHRR, ERS-ATSR, and SPOT-VGT, in Global and Regional Vegetation Fire Monitoring from Space, Planning and Coordinated International Effort (Eds. F. Ahern, J.G. Goldammer, C. Justice), 105-124.
He, L., and Z. Li, 2011: Enhancement of a fire detection algorithm by eliminating solar contamination effects and atmospheric path radiance: application to MODIS data, Int. J. Remote Sens., 32, 6273-6293.
He, L., and Z. Li, 2012: Enhancement of a fire detection algorithm by eliminating solar reflection in the mid-IR band: application to AVHRR data, Int. J. Remote Sens., 33, 7047-7059.
Ichoku, C., Y. Kaufman, L. Giglio, Z. Li, R. H. Fraser, J. Jin, and B. Park, 2003: Comparative analysis of daytime fire detection algorithms using AVHRR data for the 1995 fire season in Canada: perspective for MODIS, Int. J. Remote Sens., 24, 1669-1690.
Li, Z., 1998: Remote Sensing of Forest Fires by NOAA/AVHRR, in CGMS Directory of Meteorological Satellite Applications (ed. J. Morgan).
Li, Z., J. Cihlar, L. Moreau, F. Huang, and B. Lee, 1997: Monitoring fire activities in the boreal ecosystem, J. Geophys. Res. Atmos.,102, 29,611-29,624.
Li, Z., S. Nadon, and J. Cihlar, 2000: Satellite-based detection of Canadian boreal forest fires: development and application of the algorithm, Int. J. Remote Sens., 21, 3057-3069.
Li, Z., Y. Kaufman, C. Ichoku, R. Fraser, A. Trishchenko, L. Gilgil, J. Jin, and X. Yu, 2001: A review of AVHRR-based active fire detection algorithms: principles, limitations, and recommendations, in Global and Regional Vegetation Fire Monitoring from Space, Planning and Coordinated International Effort (Eds. F. Ahern, J.G. Goldammer, C. Justice), 199-225.
Pu, R., Z. Li, P. Gong, R. Fraser, I. Csiszar, W. Hao, S. Kondragunta, and F. Weng, 2007: Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR data, Remote Sens. Environ., 108, 198-208, doi:10.1016/j.rse.2006.02.027.
Burned area mapping (10)
Arino, O., I. Piccolini, E. Kasischke, F. Siegert, E. Chuvieco, P. Martin, Z. Li, Fraser, H. Eva,D. Stropplana, J. Pereira, J. M. N. Silva, D. Roy, and P. Barbosa, 2001: Mapping of burned surfaces in vegetation fires, in Global and Regional Vegetation Fire Monitoring from Space, Planning and Coordinated International Effort (Eds. F. Ahern, J.G. Goldammer, C. Justice), 227-255.
Fraser, R., and Z. Li, 2002: Estimating fire-related parameters in boreal forest using SPOT VEGETATION, Remote Sens. Environ., 82, 95-110.
Fraser, R., Z. Li, and J. Cihlar, 2000: Hotspot and NDVI differencing synergy (HANDS): a new technique for burned area mapping over boreal forest, Remote Sens. Environ., 74, 362-375.
Fraser, R., Z. Li, and R. Landry, 2000: SPOT VEGETATION for characterizing boreal forest fires, Int. J. Remote Sens., 21, 3525-3532.
Fraser, R. H., R. J. Hall, R. Landry, T. Landry, T. Lynham, D. Raymond, B. Lee, and Z. Li, 2004: Validation and calibration of Canada-wide coarse-resolution satellite burned-area maps, Photogramm. Eng. Remote Sens., 70, 451-460.
Gong, P., R. Pu, Z. Li, J. Scarborough, N. Clinton, and L.M. Levien, 2006: An integrated approach to wildland fire mapping of California, USA using NOAA/AVHRR data, Photogrammetic Eng. Remote Sens., 72, 139-150.
Li, Z., S. Nadon, J. Cihlar, and B. J. Stocks, 2000: Satellite-based mapping of Canadian boreal forest fires: evaluation and comparison of algorithms, Int. J. Remote Sens., 21, 3071-3082.
Li, Z., R. Fraser, J. Jin, A. A. Abuelgasim, I. Csiszar, P. Gong, R. Pu, and W. Hao, 2003: Evaluation of algorithms for fire detection and mapping across North America from satellite, J. Geophys. Res. Atmos., 108(D2), doi:10.1029/2001JD001377.
Li, Z., J. Jin, P. Gong, and R. Pu, 2006: Use of satellite remote sensing data for modeling carbon emissions from fires: a perspective in North America, Earth Science Satellite Remote Sensing (eds. J. Qu et al.), Springer-Verlag and Tsinghua University Press, 337-362.
Pu, R., P. Gong, Z. Li, and J. Scarborough, 2004: A dynamic algorithm for wildfire mapping with NOAA AVHRR data, Int. J. Wild Fires, 13, 275-285.
Land Cover (9)
Cihlar, J., R. Fernandes, R. Fraser, J. Chen Jing, W. Chen, R. Latifovic, J. Liu Jane, and Z. Li, 2003: National scale forest information extraction from coarse resolution satellite data, Part 2: Forest Biophysical parameters and carbon, Remote Sensing of Forest Environments: Concepts and Case Studies (ed. M.A. Wulder, and S.E. Franklin), Kluwer Academic Publishers, Boston/Dordrecht/London, 359-388.
Cihlar, J., J. Chen, Z. Li, et al., 2002: GeoComp-n, an advanced system for the processing of coarse and medium resolution satellite data. Part 2: Biophysical products for northern ecosystems, Can. J. Remote Sens., 28, 21-44.
Cihlar, J., R. Latifovic, J. M. Chen, J. Beaubien, and Z. Li, 2000: Selecting representative high resolution sample images for land cover studies. Part 1: Methodology, Remote Sens. Environ., 71, 26-42.
Cihlar, J., R. Latifovic, J. M. Chen, J. Beaubien, and Z. Li, 2000: Selecting representative high resolution sample images for land cover studies. Part 2: Application to estimating land cover composition, Remote Sens. Environ., 72, 127-138.
Cihlar, J., J. Chen, Z. Li, F. Huang, and H. Pokrant, 1998: Can interannual land surface signal be discerned in composite AVHRR data?, J. Geophys. Res. Atmos., 103, 23,163-23,172.
Cihlar, J., J. Chen, and Z. Li, 1997: Seasonal AVHRR multichannel data sets and products for studies of surface-atmosphere interactions, J. Geophys. Res. Atmos., 102, 29,625-29,640.
Cihlar, J., H. Ly, Z. Li, J. Chen, H. Pokrant, and F. Huang, 1997: Multi-temporal, multi-channel AVHRR data sets for land biosphere studies: artifacts and corrections, Remote Sens. Environ., 60, 35-57.
Cihlar, J., J. Chen, and Z. Li, 1997: On the validation of satellite-derived products for land applications, Can. J. Remote Sens., 23, 381-389.
Cihlar, J., J. Beaubien, Q. Xiao, J. Chen, and Z. Li, 1997: Land cover of the BOREAS region from AVHRR and LANDSAT data, Can. J. Remote Sens., 23, 163-175.
Remote Sensing Techniques (21)
Calibration (10)
Chen, W., L. Yan, Z. Li, X. Jing, Y. Duan, and X. Xiong, 2013: In-flight absolute calibration of an airborne wide-view multispectral imager using a reflectance-based method and its validation, Int. J. Remote Sens., 34, 1995-2005.
Chen, W., H. Zhao, Z. Li, X. Jing, and L. Yan, 2015: Uncertainty evaluation of an in-flight absolute radiometric calibration using a statistical Monte Carlo method, IEEE Trans. Geosci. Remote Sens., 53, doi:10.1109/TGRS.2014.2366779.
Cihlar, J., R. Latifovic, J. Chen, and Z. Li, 1999: Testing near real-time detection of contaminated pixels in AVHRR composites, Can. J. Remote Sens., 25, 160-170, doi:10.1080/07038992.1999.10874714.
Cihlar, J., L. Tcherednichenko, R. Latifovic, Z. Li, and J. M. Chen, 2001: Impact of variable atmospheric water vapour content on AVHRR data corrections over land, IEEE Trans. Geosci. Remote Sens., 39, 173-180, doi:10.1109/36.898679.
Liu, J., Z. Li, Y. L. Qiao, Y. J. Liu, and Y. X. Zhang, 2004: A new method for cross-calibration of two satellite sensors, Int. J. Remote Sens., 25, 5267-5281.
Trishchenko, A., J. Cihlar, and Z. Li, 2002: Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors, Remote Sens. Environ., 81, 1-18.
Trishchenko, A., G. Fedosejevs, Z. Li, and J. Cihlar, 2002: Trends and uncertainties in thermal calibration of AVHRR radiometers onboard NOAA-9 to NOAA-16, J. Geophys. Res. Atmos., 107(D24), doi: 10.1029/2002JD002353.
Trishchenko, A., and Z. Li, 2001: A method for the correction of AVHRR onboard IR calibration in the event of short-term radiative contamination, Int. J. Remote Sens., 22, 3619-3624.
Trishchenko, A., and Z. Li, 1998: Use of ScaRaB measurements for validating a GOES-based TOA radiation product, J. Appl. Meteorol., 37, 591-605, doi:10.1175/1520-0450(1998)037<0591:UOSMFV>2.0.CO;2.
Xin, J., Y. Wang, Z. Li, P. Wang, S. Wang, T. Wen, and Y. Sun, 2006: Introduction and calibration of the Chinese Sun Hazemeter Network, Environ. Sci., 27(9), 1697-1702.
Bi-directional reflectance distribution function (6)
Chang, F.-L., Z. Li, and A. Trishchenko, 2000: The dependence of TOA anisotropic reflection on cloud properties inferred from ScaRaB satellite data, J. Appl. Meteorol., 39, 2480-2493.
Li, Z., 1996: On the angular correction of satellite radiation measurements: the performance of ERBE angular dependence model in the Arctic, J. Theor. Appl. Climatol., 54, 235-248.
Li, Z., J. Cihlar, X. Zhang, L. Moreau, and L. Hung, 1996: The bidirectional effects of AVHRR measurements over boreal regions, IEEE Tran. Geosci. Remote Sen., 34, 1308-1322.
Li, Z., L. Moreau, J. Cihlar, and D. W. Deering, 1997: An evaluation of kernel-driven bidirectional models using PARABOLA measurements, Can. J. Remote Sens. 23, 120-130.
Luo, Y., A. Trishchenko, R. Latifovic, and Z. Li, 2005: Surface bidirectional reflectance and albedo properties derived using a land cover based approach with Moderate Resolution Imaging Spectroradiometer observations, J. Geophys. Res. Atmos., 110, D01106, doi:10.1029/2004JD004741.
Wu, A., Z. Li, and J. Cihlar, 1995: Effects of land cover type and greenness on AVHRR bidirectional reflectances: analysis and removal, J. Geophys. Res. Atmos., 100, D5, doi:10.1029/95JD00512100.
Spectral conversion (2)
Li, Z., and H. G. Leighton, 1992: Narrowband to broadband conversion with spatially autocorrelated reflectance measurements, J. Appl. Meteorol., 31, 421-432.
Li, Z., and A. Trishchenko, 1999: A study towards an improved understanding of the relationship between visible and shortwave measurements, J. Atmos. Ocean. Tech., 16, 347-360.
Platforms and sensors (3)
Li, Z., X. Yu, and Y. Kaufman, 2000: On the new generation of earth observation system, Science (China), 52(4), 9-12.
Liang, C.-S., H. Wu, H.-Y. Li, Q. Zhang, Z. Li, and K.-B. He, 2020: Efficient data preprocessing, episode classification, and source apportionment of particle number concentrations, Sci. Total Environ., 744, 140923, doi:10.1016/j.scitotenv.2020.140923. Supplement
Pankine, A., Z. Li, D. Parsons, M. Purucker, E. Weinstock, W. Wiscombe, and K. Nock, 2009: Stratospheric satellites for earth observations, Bull. Amer. Meteorol. Soc., 90(8), 1109-1119, doi:10.1175/2009BAMS2624.1.
Other (5)
Han, W., Z. Tao, Z. Li, M. Cheng, H. Fan, M. C. Cribb, and Q. Wang, 2022: Effect of urban built-up area expansion on urban heat islands in different seasons in 34 metropolitan regions across China, Remote Sens., 15, 248, doi:10.3390/rs15010248.
He, H., H. Wang, Z. Guan, H. Chen, Q. Fu, M. Wang, X. Dong, C. Cui, L. Wang, B. Wang, G. Chen, Z. Li, and D.-L. Zhang, 2020: Facilitating international collaboration on climate change research, Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-19-0320.1.
He, L., J. Wei, Y. Wang, Q. Shang, J. Liu, Y. Yin, C. Frankenberg, J. H. Jiang, Z. Li, and Y. L. Yung, 2022: Marked impacts of pollution mitigation on crop yields in China, Earth's Future, 10, doi:10.1029/2022EF002936.
Li, Z., L. Chiu, S. Weng, D.-L. Zhang, J. Du, J. Huang, M. Jin, H. Juang, F.-C. Ko, S. Lu, S. Yang, and D. Yuna, 2007: The rapid growth of publications by atmospheric and oceanic scientists of Chinese origin, Bull. Amer. Meteorol. Soc., 88(6), 846-848, doi:10.1175/BAMS-88-6-846.
Wang, C., X. Bi, Q. Luan, and Z. Li, 2022: Estimation of daily and instantaneous near-surface air temperature from MODIS data using machine learning methods in the Jingjinji area of China, Remote Sens., 14, 1916, doi:10.3390/rs14081916.